ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  serif0 GIF version

Theorem serif0 10189
Description: If an infinite series converges, its underlying sequence converges to zero. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 16-Feb-2014.)
Hypotheses
Ref Expression
climcauc.1 𝑍 = (ℤ𝑀)
serif0.2 (𝜑𝑀 ∈ ℤ)
serif0.3 (𝜑𝐹𝑉)
serif0.4 (𝜑 → seq𝑀( + , 𝐹, ℂ) ∈ dom ⇝ )
serif0.5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
Assertion
Ref Expression
serif0 (𝜑𝐹 ⇝ 0)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑍   𝜑,𝑘   𝑘,𝑉

Proof of Theorem serif0
Dummy variables 𝑗 𝑚 𝑛 𝑥 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 serif0.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
2 serif0.4 . . . . 5 (𝜑 → seq𝑀( + , 𝐹, ℂ) ∈ dom ⇝ )
3 climcauc.1 . . . . . 6 𝑍 = (ℤ𝑀)
43climcaucn 10188 . . . . 5 ((𝑀 ∈ ℤ ∧ seq𝑀( + , 𝐹, ℂ) ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑗))) < 𝑥))
51, 2, 4syl2anc 403 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑗))) < 𝑥))
63cau3 10001 . . . 4 (∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥))
75, 6sylib 120 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥))
83peano2uzs 8672 . . . . . . 7 (𝑗𝑍 → (𝑗 + 1) ∈ 𝑍)
98adantl 271 . . . . . 6 ((𝜑𝑗𝑍) → (𝑗 + 1) ∈ 𝑍)
10 eluzelz 8628 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑗) → 𝑚 ∈ ℤ)
11 uzid 8633 . . . . . . . . . 10 (𝑚 ∈ ℤ → 𝑚 ∈ (ℤ𝑚))
12 peano2uz 8671 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑚) → (𝑚 + 1) ∈ (ℤ𝑚))
13 fveq2 5198 . . . . . . . . . . . . . 14 (𝑘 = (𝑚 + 1) → (seq𝑀( + , 𝐹, ℂ)‘𝑘) = (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))
1413oveq2d 5548 . . . . . . . . . . . . 13 (𝑘 = (𝑚 + 1) → ((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘)) = ((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1))))
1514fveq2d 5202 . . . . . . . . . . . 12 (𝑘 = (𝑚 + 1) → (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) = (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))))
1615breq1d 3795 . . . . . . . . . . 11 (𝑘 = (𝑚 + 1) → ((abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥 ↔ (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) < 𝑥))
1716rspcv 2697 . . . . . . . . . 10 ((𝑚 + 1) ∈ (ℤ𝑚) → (∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) < 𝑥))
1810, 11, 12, 174syl 18 . . . . . . . . 9 (𝑚 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) < 𝑥))
1918adantld 272 . . . . . . . 8 (𝑚 ∈ (ℤ𝑗) → (((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥) → (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) < 𝑥))
2019ralimia 2424 . . . . . . 7 (∀𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥) → ∀𝑚 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) < 𝑥)
21 simpr 108 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → 𝑗𝑍)
2221, 3syl6eleq 2171 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
23 eluzelz 8628 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
2422, 23syl 14 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → 𝑗 ∈ ℤ)
25 eluzp1m1 8642 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (𝑘 − 1) ∈ (ℤ𝑗))
2624, 25sylan 277 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (𝑘 − 1) ∈ (ℤ𝑗))
27 fveq2 5198 . . . . . . . . . . . . . 14 (𝑚 = (𝑘 − 1) → (seq𝑀( + , 𝐹, ℂ)‘𝑚) = (seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)))
28 oveq1 5539 . . . . . . . . . . . . . . 15 (𝑚 = (𝑘 − 1) → (𝑚 + 1) = ((𝑘 − 1) + 1))
2928fveq2d 5202 . . . . . . . . . . . . . 14 (𝑚 = (𝑘 − 1) → (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)) = (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1)))
3027, 29oveq12d 5550 . . . . . . . . . . . . 13 (𝑚 = (𝑘 − 1) → ((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1))) = ((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1))))
3130fveq2d 5202 . . . . . . . . . . . 12 (𝑚 = (𝑘 − 1) → (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) = (abs‘((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1)))))
3231breq1d 3795 . . . . . . . . . . 11 (𝑚 = (𝑘 − 1) → ((abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) < 𝑥 ↔ (abs‘((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1)))) < 𝑥))
3332rspcv 2697 . . . . . . . . . 10 ((𝑘 − 1) ∈ (ℤ𝑗) → (∀𝑚 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1)))) < 𝑥))
3426, 33syl 14 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (∀𝑚 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1)))) < 𝑥))
35 serif0.5 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
363, 1, 35iserf 9453 . . . . . . . . . . . . . 14 (𝜑 → seq𝑀( + , 𝐹, ℂ):𝑍⟶ℂ)
3736ad2antrr 471 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → seq𝑀( + , 𝐹, ℂ):𝑍⟶ℂ)
383uztrn2 8636 . . . . . . . . . . . . . . 15 ((𝑗𝑍 ∧ (𝑘 − 1) ∈ (ℤ𝑗)) → (𝑘 − 1) ∈ 𝑍)
3921, 38sylan 277 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ (𝑘 − 1) ∈ (ℤ𝑗)) → (𝑘 − 1) ∈ 𝑍)
4026, 39syldan 276 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (𝑘 − 1) ∈ 𝑍)
4137, 40ffvelrnd 5324 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) ∈ ℂ)
423uztrn2 8636 . . . . . . . . . . . . . 14 (((𝑗 + 1) ∈ 𝑍𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘𝑍)
439, 42sylan 277 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘𝑍)
4437, 43ffvelrnd 5324 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (seq𝑀( + , 𝐹, ℂ)‘𝑘) ∈ ℂ)
4541, 44abssubd 10079 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (abs‘((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) = (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑘) − (seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)))))
46 eluzelz 8628 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘(𝑗 + 1)) → 𝑘 ∈ ℤ)
4746adantl 271 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘 ∈ ℤ)
4847zcnd 8470 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘 ∈ ℂ)
49 ax-1cn 7069 . . . . . . . . . . . . . . 15 1 ∈ ℂ
50 npcan 7317 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 − 1) + 1) = 𝑘)
5148, 49, 50sylancl 404 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → ((𝑘 − 1) + 1) = 𝑘)
5251fveq2d 5202 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1)) = (seq𝑀( + , 𝐹, ℂ)‘𝑘))
5352oveq2d 5548 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → ((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1))) = ((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘𝑘)))
5453fveq2d 5202 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (abs‘((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1)))) = (abs‘((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))))
551ad2antrr 471 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑀 ∈ ℤ)
56 eluzp1p1 8644 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (ℤ𝑀) → (𝑗 + 1) ∈ (ℤ‘(𝑀 + 1)))
5722, 56syl 14 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑍) → (𝑗 + 1) ∈ (ℤ‘(𝑀 + 1)))
58 eqid 2081 . . . . . . . . . . . . . . . . 17 (ℤ‘(𝑀 + 1)) = (ℤ‘(𝑀 + 1))
5958uztrn2 8636 . . . . . . . . . . . . . . . 16 (((𝑗 + 1) ∈ (ℤ‘(𝑀 + 1)) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘 ∈ (ℤ‘(𝑀 + 1)))
6057, 59sylan 277 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘 ∈ (ℤ‘(𝑀 + 1)))
61 cnex 7097 . . . . . . . . . . . . . . . 16 ℂ ∈ V
6261a1i 9 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → ℂ ∈ V)
63 simpr 108 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) ∧ 𝑎 ∈ (ℤ𝑀)) → 𝑎 ∈ (ℤ𝑀))
6463, 3syl6eleqr 2172 . . . . . . . . . . . . . . . 16 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) ∧ 𝑎 ∈ (ℤ𝑀)) → 𝑎𝑍)
6535ralrimiva 2434 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
6665ad3antrrr 475 . . . . . . . . . . . . . . . 16 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) ∧ 𝑎 ∈ (ℤ𝑀)) → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
67 fveq2 5198 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑎 → (𝐹𝑘) = (𝐹𝑎))
6867eleq1d 2147 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑎 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑎) ∈ ℂ))
6968rspcva 2699 . . . . . . . . . . . . . . . 16 ((𝑎𝑍 ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → (𝐹𝑎) ∈ ℂ)
7064, 66, 69syl2anc 403 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) ∧ 𝑎 ∈ (ℤ𝑀)) → (𝐹𝑎) ∈ ℂ)
71 addcl 7098 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 + 𝑏) ∈ ℂ)
7271adantl 271 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) ∧ (𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ)) → (𝑎 + 𝑏) ∈ ℂ)
7355, 60, 62, 70, 72iseqm1 9447 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (seq𝑀( + , 𝐹, ℂ)‘𝑘) = ((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) + (𝐹𝑘)))
7473oveq1d 5547 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → ((seq𝑀( + , 𝐹, ℂ)‘𝑘) − (seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1))) = (((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) + (𝐹𝑘)) − (seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1))))
7535adantlr 460 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
7643, 75syldan 276 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (𝐹𝑘) ∈ ℂ)
7741, 76pncan2d 7421 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) + (𝐹𝑘)) − (seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1))) = (𝐹𝑘))
7874, 77eqtr2d 2114 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (𝐹𝑘) = ((seq𝑀( + , 𝐹, ℂ)‘𝑘) − (seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1))))
7978fveq2d 5202 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (abs‘(𝐹𝑘)) = (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑘) − (seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)))))
8045, 54, 793eqtr4d 2123 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (abs‘((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1)))) = (abs‘(𝐹𝑘)))
8180breq1d 3795 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → ((abs‘((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1)))) < 𝑥 ↔ (abs‘(𝐹𝑘)) < 𝑥))
8234, 81sylibd 147 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (∀𝑚 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) < 𝑥 → (abs‘(𝐹𝑘)) < 𝑥))
8382ralrimdva 2441 . . . . . . 7 ((𝜑𝑗𝑍) → (∀𝑚 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) < 𝑥 → ∀𝑘 ∈ (ℤ‘(𝑗 + 1))(abs‘(𝐹𝑘)) < 𝑥))
8420, 83syl5 32 . . . . . 6 ((𝜑𝑗𝑍) → (∀𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥) → ∀𝑘 ∈ (ℤ‘(𝑗 + 1))(abs‘(𝐹𝑘)) < 𝑥))
85 fveq2 5198 . . . . . . . 8 (𝑛 = (𝑗 + 1) → (ℤ𝑛) = (ℤ‘(𝑗 + 1)))
8685raleqdv 2555 . . . . . . 7 (𝑛 = (𝑗 + 1) → (∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ‘(𝑗 + 1))(abs‘(𝐹𝑘)) < 𝑥))
8786rspcev 2701 . . . . . 6 (((𝑗 + 1) ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ‘(𝑗 + 1))(abs‘(𝐹𝑘)) < 𝑥) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥)
889, 84, 87syl6an 1363 . . . . 5 ((𝜑𝑗𝑍) → (∀𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥))
8988rexlimdva 2477 . . . 4 (𝜑 → (∃𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥))
9089ralimdv 2430 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥))
917, 90mpd 13 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥)
92 serif0.3 . . 3 (𝜑𝐹𝑉)
93 eqidd 2082 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
943, 1, 92, 93, 35clim0c 10125 . 2 (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥))
9591, 94mpbird 165 1 (𝜑𝐹 ⇝ 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433  wral 2348  wrex 2349  Vcvv 2601   class class class wbr 3785  dom cdm 4363  wf 4918  cfv 4922  (class class class)co 5532  cc 6979  0cc0 6981  1c1 6982   + caddc 6984   < clt 7153  cmin 7279  cz 8351  cuz 8619  +crp 8734  seqcseq 9431  abscabs 9883  cli 10117
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-rp 8735  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885  df-clim 10118
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator