ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressnop0 GIF version

Theorem ressnop0 5365
Description: If 𝐴 is not in 𝐶, then the restriction of a singleton of 𝐴, 𝐵 to 𝐶 is null. (Contributed by Scott Fenton, 15-Apr-2011.)
Assertion
Ref Expression
ressnop0 𝐴𝐶 → ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅)

Proof of Theorem ressnop0
StepHypRef Expression
1 opelxp1 4395 . . 3 (⟨𝐴, 𝐵⟩ ∈ (𝐶 × V) → 𝐴𝐶)
21con3i 594 . 2 𝐴𝐶 → ¬ ⟨𝐴, 𝐵⟩ ∈ (𝐶 × V))
3 df-res 4375 . . . 4 ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ({⟨𝐴, 𝐵⟩} ∩ (𝐶 × V))
4 incom 3158 . . . 4 ({⟨𝐴, 𝐵⟩} ∩ (𝐶 × V)) = ((𝐶 × V) ∩ {⟨𝐴, 𝐵⟩})
53, 4eqtri 2101 . . 3 ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ((𝐶 × V) ∩ {⟨𝐴, 𝐵⟩})
6 disjsn 3454 . . . 4 (((𝐶 × V) ∩ {⟨𝐴, 𝐵⟩}) = ∅ ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ (𝐶 × V))
76biimpri 131 . . 3 (¬ ⟨𝐴, 𝐵⟩ ∈ (𝐶 × V) → ((𝐶 × V) ∩ {⟨𝐴, 𝐵⟩}) = ∅)
85, 7syl5eq 2125 . 2 (¬ ⟨𝐴, 𝐵⟩ ∈ (𝐶 × V) → ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅)
92, 8syl 14 1 𝐴𝐶 → ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1284  wcel 1433  Vcvv 2601  cin 2972  c0 3251  {csn 3398  cop 3401   × cxp 4361  cres 4365
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-opab 3840  df-xp 4369  df-res 4375
This theorem is referenced by:  fvunsng  5378  fsnunres  5385
  Copyright terms: Public domain W3C validator