HomeHome Intuitionistic Logic Explorer
Theorem List (p. 54 of 108)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 5301-5400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremfunfvbrb 5301 Two ways to say that 𝐴 is in the domain of 𝐹. (Contributed by Mario Carneiro, 1-May-2014.)
(Fun 𝐹 → (𝐴 ∈ dom 𝐹𝐴𝐹(𝐹𝐴)))
 
Theoremfvimacnvi 5302 A member of a preimage is a function value argument. (Contributed by NM, 4-May-2007.)
((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → (𝐹𝐴) ∈ 𝐵)
 
Theoremfvimacnv 5303 The argument of a function value belongs to the preimage of any class containing the function value. Raph Levien remarks: "This proof is unsatisfying, because it seems to me that funimass2 4997 could probably be strengthened to a biconditional." (Contributed by Raph Levien, 20-Nov-2006.)
((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ 𝐵𝐴 ∈ (𝐹𝐵)))
 
Theoremfunimass3 5304 A kind of contraposition law that infers an image subclass from a subclass of a preimage. Raph Levien remarks: "Likely this could be proved directly, and fvimacnv 5303 would be the special case of 𝐴 being a singleton, but it works this way round too." (Contributed by Raph Levien, 20-Nov-2006.)
((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵𝐴 ⊆ (𝐹𝐵)))
 
Theoremfunimass5 5305* A subclass of a preimage in terms of function values. (Contributed by NM, 15-May-2007.)
((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐴 ⊆ (𝐹𝐵) ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
 
Theoremfunconstss 5306* Two ways of specifying that a function is constant on a subdomain. (Contributed by NM, 8-Mar-2007.)
((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∀𝑥𝐴 (𝐹𝑥) = 𝐵𝐴 ⊆ (𝐹 “ {𝐵})))
 
Theoremelpreima 5307 Membership in the preimage of a set under a function. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝐹 Fn 𝐴 → (𝐵 ∈ (𝐹𝐶) ↔ (𝐵𝐴 ∧ (𝐹𝐵) ∈ 𝐶)))
 
Theoremfniniseg 5308 Membership in the preimage of a singleton, under a function. (Contributed by Mario Carneiro, 12-May-2014.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
(𝐹 Fn 𝐴 → (𝐶 ∈ (𝐹 “ {𝐵}) ↔ (𝐶𝐴 ∧ (𝐹𝐶) = 𝐵)))
 
Theoremfncnvima2 5309* Inverse images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.)
(𝐹 Fn 𝐴 → (𝐹𝐵) = {𝑥𝐴 ∣ (𝐹𝑥) ∈ 𝐵})
 
Theoremfniniseg2 5310* Inverse point images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.)
(𝐹 Fn 𝐴 → (𝐹 “ {𝐵}) = {𝑥𝐴 ∣ (𝐹𝑥) = 𝐵})
 
Theoremfnniniseg2 5311* Support sets of functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.)
(𝐹 Fn 𝐴 → (𝐹 “ (V ∖ {𝐵})) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝐵})
 
Theoremrexsupp 5312* Existential quantification restricted to a support. (Contributed by Stefan O'Rear, 23-Mar-2015.)
(𝐹 Fn 𝐴 → (∃𝑥 ∈ (𝐹 “ (V ∖ {𝑍}))𝜑 ↔ ∃𝑥𝐴 ((𝐹𝑥) ≠ 𝑍𝜑)))
 
Theoremunpreima 5313 Preimage of a union. (Contributed by Jeff Madsen, 2-Sep-2009.)
(Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∪ (𝐹𝐵)))
 
Theoreminpreima 5314 Preimage of an intersection. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Jun-2016.)
(Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∩ (𝐹𝐵)))
 
Theoremdifpreima 5315 Preimage of a difference. (Contributed by Mario Carneiro, 14-Jun-2016.)
(Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∖ (𝐹𝐵)))
 
Theoremrespreima 5316 The preimage of a restricted function. (Contributed by Jeff Madsen, 2-Sep-2009.)
(Fun 𝐹 → ((𝐹𝐵) “ 𝐴) = ((𝐹𝐴) ∩ 𝐵))
 
Theoremfimacnv 5317 The preimage of the codomain of a mapping is the mapping's domain. (Contributed by FL, 25-Jan-2007.)
(𝐹:𝐴𝐵 → (𝐹𝐵) = 𝐴)
 
Theoremfnopfv 5318 Ordered pair with function value. Part of Theorem 4.3(i) of [Monk1] p. 41. (Contributed by NM, 30-Sep-2004.)
((𝐹 Fn 𝐴𝐵𝐴) → ⟨𝐵, (𝐹𝐵)⟩ ∈ 𝐹)
 
Theoremfvelrn 5319 A function's value belongs to its range. (Contributed by NM, 14-Oct-1996.)
((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ ran 𝐹)
 
Theoremfnfvelrn 5320 A function's value belongs to its range. (Contributed by NM, 15-Oct-1996.)
((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) ∈ ran 𝐹)
 
Theoremffvelrn 5321 A function's value belongs to its codomain. (Contributed by NM, 12-Aug-1999.)
((𝐹:𝐴𝐵𝐶𝐴) → (𝐹𝐶) ∈ 𝐵)
 
Theoremffvelrni 5322 A function's value belongs to its codomain. (Contributed by NM, 6-Apr-2005.)
𝐹:𝐴𝐵       (𝐶𝐴 → (𝐹𝐶) ∈ 𝐵)
 
Theoremffvelrnda 5323 A function's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.)
(𝜑𝐹:𝐴𝐵)       ((𝜑𝐶𝐴) → (𝐹𝐶) ∈ 𝐵)
 
Theoremffvelrnd 5324 A function's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.)
(𝜑𝐹:𝐴𝐵)    &   (𝜑𝐶𝐴)       (𝜑 → (𝐹𝐶) ∈ 𝐵)
 
Theoremrexrn 5325* Restricted existential quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.)
(𝑥 = (𝐹𝑦) → (𝜑𝜓))       (𝐹 Fn 𝐴 → (∃𝑥 ∈ ran 𝐹𝜑 ↔ ∃𝑦𝐴 𝜓))
 
Theoremralrn 5326* Restricted universal quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.)
(𝑥 = (𝐹𝑦) → (𝜑𝜓))       (𝐹 Fn 𝐴 → (∀𝑥 ∈ ran 𝐹𝜑 ↔ ∀𝑦𝐴 𝜓))
 
Theoremelrnrexdm 5327* For any element in the range of a function there is an element in the domain of the function for which the function value is the element of the range. (Contributed by Alexander van der Vekens, 8-Dec-2017.)
(Fun 𝐹 → (𝑌 ∈ ran 𝐹 → ∃𝑥 ∈ dom 𝐹 𝑌 = (𝐹𝑥)))
 
Theoremelrnrexdmb 5328* For any element in the range of a function there is an element in the domain of the function for which the function value is the element of the range. (Contributed by Alexander van der Vekens, 17-Dec-2017.)
(Fun 𝐹 → (𝑌 ∈ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝑌 = (𝐹𝑥)))
 
Theoremeldmrexrn 5329* For any element in the domain of a function there is an element in the range of the function which is the function value for the element of the domain. (Contributed by Alexander van der Vekens, 8-Dec-2017.)
(Fun 𝐹 → (𝑌 ∈ dom 𝐹 → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹𝑌)))
 
Theoremralrnmpt 5330* A restricted quantifier over an image set. (Contributed by Mario Carneiro, 20-Aug-2015.)
𝐹 = (𝑥𝐴𝐵)    &   (𝑦 = 𝐵 → (𝜓𝜒))       (∀𝑥𝐴 𝐵𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥𝐴 𝜒))
 
Theoremrexrnmpt 5331* A restricted quantifier over an image set. (Contributed by Mario Carneiro, 20-Aug-2015.)
𝐹 = (𝑥𝐴𝐵)    &   (𝑦 = 𝐵 → (𝜓𝜒))       (∀𝑥𝐴 𝐵𝑉 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑥𝐴 𝜒))
 
Theoremdff2 5332 Alternate definition of a mapping. (Contributed by NM, 14-Nov-2007.)
(𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴𝐹 ⊆ (𝐴 × 𝐵)))
 
Theoremdff3im 5333* Property of a mapping. (Contributed by Jim Kingdon, 4-Jan-2019.)
(𝐹:𝐴𝐵 → (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦))
 
Theoremdff4im 5334* Property of a mapping. (Contributed by Jim Kingdon, 4-Jan-2019.)
(𝐹:𝐴𝐵 → (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝐹𝑦))
 
Theoremdffo3 5335* An onto mapping expressed in terms of function values. (Contributed by NM, 29-Oct-2006.)
(𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
 
Theoremdffo4 5336* Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007.)
(𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦))
 
Theoremdffo5 5337* Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007.)
(𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥 𝑥𝐹𝑦))
 
Theoremfoelrn 5338* Property of a surjective function. (Contributed by Jeff Madsen, 4-Jan-2011.)
((𝐹:𝐴onto𝐵𝐶𝐵) → ∃𝑥𝐴 𝐶 = (𝐹𝑥))
 
Theoremfoco2 5339 If a composition of two functions is surjective, then the function on the left is surjective. (Contributed by Jeff Madsen, 16-Jun-2011.)
((𝐹:𝐵𝐶𝐺:𝐴𝐵 ∧ (𝐹𝐺):𝐴onto𝐶) → 𝐹:𝐵onto𝐶)
 
Theoremfmpt 5340* Functionality of the mapping operation. (Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Mario Carneiro, 31-Aug-2015.)
𝐹 = (𝑥𝐴𝐶)       (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
 
Theoremf1ompt 5341* Express bijection for a mapping operation. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by Mario Carneiro, 4-Dec-2016.)
𝐹 = (𝑥𝐴𝐶)       (𝐹:𝐴1-1-onto𝐵 ↔ (∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵 ∃!𝑥𝐴 𝑦 = 𝐶))
 
Theoremfmpti 5342* Functionality of the mapping operation. (Contributed by NM, 19-Mar-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
𝐹 = (𝑥𝐴𝐶)    &   (𝑥𝐴𝐶𝐵)       𝐹:𝐴𝐵
 
Theoremfmptd 5343* Domain and codomain of the mapping operation; deduction form. (Contributed by Mario Carneiro, 13-Jan-2013.)
((𝜑𝑥𝐴) → 𝐵𝐶)    &   𝐹 = (𝑥𝐴𝐵)       (𝜑𝐹:𝐴𝐶)
 
Theoremffnfv 5344* A function maps to a class to which all values belong. (Contributed by NM, 3-Dec-2003.)
(𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
 
Theoremffnfvf 5345 A function maps to a class to which all values belong. This version of ffnfv 5344 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 28-Sep-2006.)
𝑥𝐴    &   𝑥𝐵    &   𝑥𝐹       (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
 
Theoremfnfvrnss 5346* An upper bound for range determined by function values. (Contributed by NM, 8-Oct-2004.)
((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) → ran 𝐹𝐵)
 
Theoremrnmptss 5347* The range of an operation given by the "maps to" notation as a subset. (Contributed by Thierry Arnoux, 24-Sep-2017.)
𝐹 = (𝑥𝐴𝐵)       (∀𝑥𝐴 𝐵𝐶 → ran 𝐹𝐶)
 
Theoremfmpt2d 5348* Domain and codomain of the mapping operation; deduction form. (Contributed by NM, 27-Dec-2014.)
((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑𝐹 = (𝑥𝐴𝐵))    &   ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ 𝐶)       (𝜑𝐹:𝐴𝐶)
 
Theoremffvresb 5349* A necessary and sufficient condition for a restricted function. (Contributed by Mario Carneiro, 14-Nov-2013.)
(Fun 𝐹 → ((𝐹𝐴):𝐴𝐵 ↔ ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵)))
 
Theoremf1oresrab 5350* Build a bijection between restricted abstract builders, given a bijection between the base classes, deduction version. (Contributed by Thierry Arnoux, 17-Aug-2018.)
𝐹 = (𝑥𝐴𝐶)    &   (𝜑𝐹:𝐴1-1-onto𝐵)    &   ((𝜑𝑥𝐴𝑦 = 𝐶) → (𝜒𝜓))       (𝜑 → (𝐹 ↾ {𝑥𝐴𝜓}):{𝑥𝐴𝜓}–1-1-onto→{𝑦𝐵𝜒})
 
Theoremfmptco 5351* Composition of two functions expressed as ordered-pair class abstractions. If 𝐹 has the equation ( x + 2 ) and 𝐺 the equation ( 3 * z ) then (𝐺𝐹) has the equation ( 3 * ( x + 2 ) ) . (Contributed by FL, 21-Jun-2012.) (Revised by Mario Carneiro, 24-Jul-2014.)
((𝜑𝑥𝐴) → 𝑅𝐵)    &   (𝜑𝐹 = (𝑥𝐴𝑅))    &   (𝜑𝐺 = (𝑦𝐵𝑆))    &   (𝑦 = 𝑅𝑆 = 𝑇)       (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑇))
 
Theoremfmptcof 5352* Version of fmptco 5351 where 𝜑 needn't be distinct from 𝑥. (Contributed by NM, 27-Dec-2014.)
(𝜑 → ∀𝑥𝐴 𝑅𝐵)    &   (𝜑𝐹 = (𝑥𝐴𝑅))    &   (𝜑𝐺 = (𝑦𝐵𝑆))    &   (𝑦 = 𝑅𝑆 = 𝑇)       (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑇))
 
Theoremfmptcos 5353* Composition of two functions expressed as mapping abstractions. (Contributed by NM, 22-May-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
(𝜑 → ∀𝑥𝐴 𝑅𝐵)    &   (𝜑𝐹 = (𝑥𝐴𝑅))    &   (𝜑𝐺 = (𝑦𝐵𝑆))       (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑅 / 𝑦𝑆))
 
Theoremfcompt 5354* Express composition of two functions as a maps-to applying both in sequence. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
((𝐴:𝐷𝐸𝐵:𝐶𝐷) → (𝐴𝐵) = (𝑥𝐶 ↦ (𝐴‘(𝐵𝑥))))
 
Theoremfcoconst 5355 Composition with a constant function. (Contributed by Stefan O'Rear, 11-Mar-2015.)
((𝐹 Fn 𝑋𝑌𝑋) → (𝐹 ∘ (𝐼 × {𝑌})) = (𝐼 × {(𝐹𝑌)}))
 
Theoremfsn 5356 A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 10-Dec-2003.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {⟨𝐴, 𝐵⟩})
 
Theoremfsng 5357 A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 26-Oct-2012.)
((𝐴𝐶𝐵𝐷) → (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {⟨𝐴, 𝐵⟩}))
 
Theoremfsn2 5358 A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by NM, 19-May-2004.)
𝐴 ∈ V       (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
 
Theoremxpsng 5359 The cross product of two singletons. (Contributed by Mario Carneiro, 30-Apr-2015.)
((𝐴𝑉𝐵𝑊) → ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩})
 
Theoremxpsn 5360 The cross product of two singletons. (Contributed by NM, 4-Nov-2006.)
𝐴 ∈ V    &   𝐵 ∈ V       ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩}
 
Theoremdfmpt 5361 Alternate definition for the "maps to" notation df-mpt 3841 (although it requires that 𝐵 be a set). (Contributed by NM, 24-Aug-2010.) (Revised by Mario Carneiro, 30-Dec-2016.)
𝐵 ∈ V       (𝑥𝐴𝐵) = 𝑥𝐴 {⟨𝑥, 𝐵⟩}
 
Theoremfnasrn 5362 A function expressed as the range of another function. (Contributed by Mario Carneiro, 22-Jun-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
𝐵 ∈ V       (𝑥𝐴𝐵) = ran (𝑥𝐴 ↦ ⟨𝑥, 𝐵⟩)
 
Theoremdfmptg 5363 Alternate definition for the "maps to" notation df-mpt 3841 (which requires that 𝐵 be a set). (Contributed by Jim Kingdon, 9-Jan-2019.)
(∀𝑥𝐴 𝐵𝑉 → (𝑥𝐴𝐵) = 𝑥𝐴 {⟨𝑥, 𝐵⟩})
 
Theoremfnasrng 5364 A function expressed as the range of another function. (Contributed by Jim Kingdon, 9-Jan-2019.)
(∀𝑥𝐴 𝐵𝑉 → (𝑥𝐴𝐵) = ran (𝑥𝐴 ↦ ⟨𝑥, 𝐵⟩))
 
Theoremressnop0 5365 If 𝐴 is not in 𝐶, then the restriction of a singleton of 𝐴, 𝐵 to 𝐶 is null. (Contributed by Scott Fenton, 15-Apr-2011.)
𝐴𝐶 → ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅)
 
Theoremfpr 5366 A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   𝐷 ∈ V       (𝐴𝐵 → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶{𝐶, 𝐷})
 
Theoremfprg 5367 A function with a domain of two elements. (Contributed by FL, 2-Feb-2014.)
(((𝐴𝐸𝐵𝐹) ∧ (𝐶𝐺𝐷𝐻) ∧ 𝐴𝐵) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶{𝐶, 𝐷})
 
Theoremftpg 5368 A function with a domain of three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
(((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩}:{𝑋, 𝑌, 𝑍}⟶{𝐴, 𝐵, 𝐶})
 
Theoremftp 5369 A function with a domain of three elements. (Contributed by Stefan O'Rear, 17-Oct-2014.) (Proof shortened by Alexander van der Vekens, 23-Jan-2018.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   𝑋 ∈ V    &   𝑌 ∈ V    &   𝑍 ∈ V    &   𝐴𝐵    &   𝐴𝐶    &   𝐵𝐶       {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩, ⟨𝐶, 𝑍⟩}:{𝐴, 𝐵, 𝐶}⟶{𝑋, 𝑌, 𝑍}
 
Theoremfnressn 5370 A function restricted to a singleton. (Contributed by NM, 9-Oct-2004.)
((𝐹 Fn 𝐴𝐵𝐴) → (𝐹 ↾ {𝐵}) = {⟨𝐵, (𝐹𝐵)⟩})
 
Theoremfressnfv 5371 The value of a function restricted to a singleton. (Contributed by NM, 9-Oct-2004.)
((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹 ↾ {𝐵}):{𝐵}⟶𝐶 ↔ (𝐹𝐵) ∈ 𝐶))
 
Theoremfvconst 5372 The value of a constant function. (Contributed by NM, 30-May-1999.)
((𝐹:𝐴⟶{𝐵} ∧ 𝐶𝐴) → (𝐹𝐶) = 𝐵)
 
Theoremfmptsn 5373* Express a singleton function in maps-to notation. (Contributed by NM, 6-Jun-2006.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by Stefan O'Rear, 28-Feb-2015.)
((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩} = (𝑥 ∈ {𝐴} ↦ 𝐵))
 
Theoremfmptap 5374* Append an additional value to a function. (Contributed by NM, 6-Jun-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
𝐴 ∈ V    &   𝐵 ∈ V    &   (𝑅 ∪ {𝐴}) = 𝑆    &   (𝑥 = 𝐴𝐶 = 𝐵)       ((𝑥𝑅𝐶) ∪ {⟨𝐴, 𝐵⟩}) = (𝑥𝑆𝐶)
 
Theoremfmptapd 5375* Append an additional value to a function. (Contributed by Thierry Arnoux, 3-Jan-2017.)
(𝜑𝐴 ∈ V)    &   (𝜑𝐵 ∈ V)    &   (𝜑 → (𝑅 ∪ {𝐴}) = 𝑆)    &   ((𝜑𝑥 = 𝐴) → 𝐶 = 𝐵)       (𝜑 → ((𝑥𝑅𝐶) ∪ {⟨𝐴, 𝐵⟩}) = (𝑥𝑆𝐶))
 
Theoremfmptpr 5376* Express a pair function in maps-to notation. (Contributed by Thierry Arnoux, 3-Jan-2017.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝜑𝐶𝑋)    &   (𝜑𝐷𝑌)    &   ((𝜑𝑥 = 𝐴) → 𝐸 = 𝐶)    &   ((𝜑𝑥 = 𝐵) → 𝐸 = 𝐷)       (𝜑 → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = (𝑥 ∈ {𝐴, 𝐵} ↦ 𝐸))
 
Theoremfvresi 5377 The value of a restricted identity function. (Contributed by NM, 19-May-2004.)
(𝐵𝐴 → (( I ↾ 𝐴)‘𝐵) = 𝐵)
 
Theoremfvunsng 5378 Remove an ordered pair not participating in a function value. (Contributed by Jim Kingdon, 7-Jan-2019.)
((𝐷𝑉𝐵𝐷) → ((𝐴 ∪ {⟨𝐵, 𝐶⟩})‘𝐷) = (𝐴𝐷))
 
Theoremfvsn 5379 The value of a singleton of an ordered pair is the second member. (Contributed by NM, 12-Aug-1994.)
𝐴 ∈ V    &   𝐵 ∈ V       ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵
 
Theoremfvsng 5380 The value of a singleton of an ordered pair is the second member. (Contributed by NM, 26-Oct-2012.)
((𝐴𝑉𝐵𝑊) → ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵)
 
Theoremfvsnun1 5381 The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 5382. (Contributed by NM, 23-Sep-2007.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐺 = ({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴})))       (𝐺𝐴) = 𝐵
 
Theoremfvsnun2 5382 The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. See also fvsnun1 5381. (Contributed by NM, 23-Sep-2007.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐺 = ({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴})))       (𝐷 ∈ (𝐶 ∖ {𝐴}) → (𝐺𝐷) = (𝐹𝐷))
 
Theoremfsnunf 5383 Adjoining a point to a function gives a function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → (𝐹 ∪ {⟨𝑋, 𝑌⟩}):(𝑆 ∪ {𝑋})⟶𝑇)
 
Theoremfsnunfv 5384 Recover the added point from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by NM, 18-May-2017.)
((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩})‘𝑋) = 𝑌)
 
Theoremfsnunres 5385 Recover the original function from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
((𝐹 Fn 𝑆 ∧ ¬ 𝑋𝑆) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) ↾ 𝑆) = 𝐹)
 
Theoremfvpr1 5386 The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.)
𝐴 ∈ V    &   𝐶 ∈ V       (𝐴𝐵 → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = 𝐶)
 
Theoremfvpr2 5387 The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.)
𝐵 ∈ V    &   𝐷 ∈ V       (𝐴𝐵 → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = 𝐷)
 
Theoremfvpr1g 5388 The value of a function with a domain of (at most) two elements. (Contributed by Alexander van der Vekens, 3-Dec-2017.)
((𝐴𝑉𝐶𝑊𝐴𝐵) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = 𝐶)
 
Theoremfvpr2g 5389 The value of a function with a domain of (at most) two elements. (Contributed by Alexander van der Vekens, 3-Dec-2017.)
((𝐵𝑉𝐷𝑊𝐴𝐵) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = 𝐷)
 
Theoremfvtp1g 5390 The value of a function with a domain of (at most) three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
(((𝐴𝑉𝐷𝑊) ∧ (𝐴𝐵𝐴𝐶)) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐴) = 𝐷)
 
Theoremfvtp2g 5391 The value of a function with a domain of (at most) three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
(((𝐵𝑉𝐸𝑊) ∧ (𝐴𝐵𝐵𝐶)) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐵) = 𝐸)
 
Theoremfvtp3g 5392 The value of a function with a domain of (at most) three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
(((𝐶𝑉𝐹𝑊) ∧ (𝐴𝐶𝐵𝐶)) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐶) = 𝐹)
 
Theoremfvtp1 5393 The first value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011.)
𝐴 ∈ V    &   𝐷 ∈ V       ((𝐴𝐵𝐴𝐶) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐴) = 𝐷)
 
Theoremfvtp2 5394 The second value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011.)
𝐵 ∈ V    &   𝐸 ∈ V       ((𝐴𝐵𝐵𝐶) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐵) = 𝐸)
 
Theoremfvtp3 5395 The third value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011.)
𝐶 ∈ V    &   𝐹 ∈ V       ((𝐴𝐶𝐵𝐶) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐶) = 𝐹)
 
Theoremfvconst2g 5396 The value of a constant function. (Contributed by NM, 20-Aug-2005.)
((𝐵𝐷𝐶𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵)
 
Theoremfconst2g 5397 A constant function expressed as a cross product. (Contributed by NM, 27-Nov-2007.)
(𝐵𝐶 → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵})))
 
Theoremfvconst2 5398 The value of a constant function. (Contributed by NM, 16-Apr-2005.)
𝐵 ∈ V       (𝐶𝐴 → ((𝐴 × {𝐵})‘𝐶) = 𝐵)
 
Theoremfconst2 5399 A constant function expressed as a cross product. (Contributed by NM, 20-Aug-1999.)
𝐵 ∈ V       (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵}))
 
Theoremfconstfvm 5400* A constant function expressed in terms of its functionality, domain, and value. See also fconst2 5399. (Contributed by Jim Kingdon, 8-Jan-2019.)
(∃𝑦 𝑦𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10795
  Copyright terms: Public domain < Previous  Next >