Proof of Theorem reu6
| Step | Hyp | Ref
| Expression |
| 1 | | df-reu 2355 |
. 2
⊢
(∃!𝑥 ∈
𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 2 | | 19.28v 1821 |
. . . . 5
⊢
(∀𝑥(𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) ↔ (𝑦 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)))) |
| 3 | | eleq1 2141 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
| 4 | | sbequ12 1694 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
| 5 | 3, 4 | anbi12d 456 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑))) |
| 6 | | equequ1 1638 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑦 ↔ 𝑦 = 𝑦)) |
| 7 | 5, 6 | bibi12d 233 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) ↔ ((𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑) ↔ 𝑦 = 𝑦))) |
| 8 | | equid 1629 |
. . . . . . . . . . . 12
⊢ 𝑦 = 𝑦 |
| 9 | 8 | tbt 245 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑) ↔ ((𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑) ↔ 𝑦 = 𝑦)) |
| 10 | | simpl 107 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑) → 𝑦 ∈ 𝐴) |
| 11 | 9, 10 | sylbir 133 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑) ↔ 𝑦 = 𝑦) → 𝑦 ∈ 𝐴) |
| 12 | 7, 11 | syl6bi 161 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) → 𝑦 ∈ 𝐴)) |
| 13 | 12 | spimv 1732 |
. . . . . . . 8
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) → 𝑦 ∈ 𝐴) |
| 14 | | bi1 116 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) → ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑦)) |
| 15 | 14 | expdimp 255 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) ∧ 𝑥 ∈ 𝐴) → (𝜑 → 𝑥 = 𝑦)) |
| 16 | | bi2 128 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) → (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ∧ 𝜑))) |
| 17 | | simpr 108 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜑) |
| 18 | 16, 17 | syl6 33 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) → (𝑥 = 𝑦 → 𝜑)) |
| 19 | 18 | adantr 270 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) ∧ 𝑥 ∈ 𝐴) → (𝑥 = 𝑦 → 𝜑)) |
| 20 | 15, 19 | impbid 127 |
. . . . . . . . . 10
⊢ ((((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) ∧ 𝑥 ∈ 𝐴) → (𝜑 ↔ 𝑥 = 𝑦)) |
| 21 | 20 | ex 113 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) → (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) |
| 22 | 21 | sps 1470 |
. . . . . . . 8
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) → (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) |
| 23 | 13, 22 | jca 300 |
. . . . . . 7
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) → (𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)))) |
| 24 | 23 | a5i 1475 |
. . . . . 6
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) → ∀𝑥(𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)))) |
| 25 | | bi1 116 |
. . . . . . . . . . 11
⊢ ((𝜑 ↔ 𝑥 = 𝑦) → (𝜑 → 𝑥 = 𝑦)) |
| 26 | 25 | imim2i 12 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)) → (𝑥 ∈ 𝐴 → (𝜑 → 𝑥 = 𝑦))) |
| 27 | 26 | impd 251 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)) → ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑦)) |
| 28 | 27 | adantl 271 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) → ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑦)) |
| 29 | | eleq1a 2150 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝐴 → (𝑥 = 𝑦 → 𝑥 ∈ 𝐴)) |
| 30 | 29 | adantr 270 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) → (𝑥 = 𝑦 → 𝑥 ∈ 𝐴)) |
| 31 | 30 | imp 122 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → 𝑥 ∈ 𝐴) |
| 32 | | bi2 128 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ↔ 𝑥 = 𝑦) → (𝑥 = 𝑦 → 𝜑)) |
| 33 | 32 | imim2i 12 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)) → (𝑥 ∈ 𝐴 → (𝑥 = 𝑦 → 𝜑))) |
| 34 | 33 | com23 77 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)) → (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 → 𝜑))) |
| 35 | 34 | imp 122 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)) ∧ 𝑥 = 𝑦) → (𝑥 ∈ 𝐴 → 𝜑)) |
| 36 | 35 | adantll 459 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → (𝑥 ∈ 𝐴 → 𝜑)) |
| 37 | 31, 36 | jcai 304 |
. . . . . . . . 9
⊢ (((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → (𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 38 | 37 | ex 113 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) → (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ∧ 𝜑))) |
| 39 | 28, 38 | impbid 127 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦)) |
| 40 | 39 | alimi 1384 |
. . . . . 6
⊢
(∀𝑥(𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) → ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦)) |
| 41 | 24, 40 | impbii 124 |
. . . . 5
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) ↔ ∀𝑥(𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)))) |
| 42 | | df-ral 2353 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 (𝜑 ↔ 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) |
| 43 | 42 | anbi2i 444 |
. . . . 5
⊢ ((𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦)) ↔ (𝑦 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)))) |
| 44 | 2, 41, 43 | 3bitr4i 210 |
. . . 4
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) ↔ (𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦))) |
| 45 | 44 | exbii 1536 |
. . 3
⊢
(∃𝑦∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦))) |
| 46 | | df-eu 1944 |
. . 3
⊢
(∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑦∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦)) |
| 47 | | df-rex 2354 |
. . 3
⊢
(∃𝑦 ∈
𝐴 ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦))) |
| 48 | 45, 46, 47 | 3bitr4i 210 |
. 2
⊢
(∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦)) |
| 49 | 1, 48 | bitri 182 |
1
⊢
(∃!𝑥 ∈
𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦)) |