![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexsns | GIF version |
Description: Restricted existential quantification over a singleton. (Contributed by Mario Carneiro, 23-Apr-2015.) (Revised by NM, 22-Aug-2018.) |
Ref | Expression |
---|---|
rexsns | ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ [𝐴 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velsn 3415 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
2 | 1 | anbi1i 445 | . . 3 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝜑) ↔ (𝑥 = 𝐴 ∧ 𝜑)) |
3 | 2 | exbii 1536 | . 2 ⊢ (∃𝑥(𝑥 ∈ {𝐴} ∧ 𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) |
4 | df-rex 2354 | . 2 ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ ∃𝑥(𝑥 ∈ {𝐴} ∧ 𝜑)) | |
5 | sbc5 2838 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) | |
6 | 3, 4, 5 | 3bitr4i 210 | 1 ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ [𝐴 / 𝑥]𝜑) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 ↔ wb 103 = wceq 1284 ∃wex 1421 ∈ wcel 1433 ∃wrex 2349 [wsbc 2815 {csn 3398 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-v 2603 df-sbc 2816 df-sn 3404 |
This theorem is referenced by: rexsng 3434 r19.12sn 3458 exfzdc 9249 |
Copyright terms: Public domain | W3C validator |