ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspc GIF version

Theorem rspc 2695
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.)
Hypotheses
Ref Expression
rspc.1 𝑥𝜓
rspc.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rspc (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem rspc
StepHypRef Expression
1 df-ral 2353 . 2 (∀𝑥𝐵 𝜑 ↔ ∀𝑥(𝑥𝐵𝜑))
2 nfcv 2219 . . . 4 𝑥𝐴
3 nfv 1461 . . . . 5 𝑥 𝐴𝐵
4 rspc.1 . . . . 5 𝑥𝜓
53, 4nfim 1504 . . . 4 𝑥(𝐴𝐵𝜓)
6 eleq1 2141 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
7 rspc.2 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
86, 7imbi12d 232 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓)))
92, 5, 8spcgf 2680 . . 3 (𝐴𝐵 → (∀𝑥(𝑥𝐵𝜑) → (𝐴𝐵𝜓)))
109pm2.43a 50 . 2 (𝐴𝐵 → (∀𝑥(𝑥𝐵𝜑) → 𝜓))
111, 10syl5bi 150 1 (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  wal 1282   = wceq 1284  wnf 1389  wcel 1433  wral 2348
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603
This theorem is referenced by:  rspcv  2697  rspc2  2711  pofun  4067  fmptcof  5352  fliftfuns  5458  qliftfuns  6213  lble  8025  exfzdc  9249  uzsinds  9428  zsupcllemstep  10341  infssuzex  10345  bezoutlemmain  10387  bj-nntrans  10746
  Copyright terms: Public domain W3C validator