| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspcdva | GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by Thierry Arnoux, 21-Jun-2020.) |
| Ref | Expression |
|---|---|
| rspcdva.1 | ⊢ (𝑥 = 𝐶 → (𝜓 ↔ 𝜒)) |
| rspcdva.2 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| rspcdva.3 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| rspcdva | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcdva.2 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | |
| 2 | rspcdva.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
| 3 | rspcdva.1 | . . . 4 ⊢ (𝑥 = 𝐶 → (𝜓 ↔ 𝜒)) | |
| 4 | 3 | adantl 271 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐶) → (𝜓 ↔ 𝜒)) |
| 5 | 2, 4 | rspcdv 2704 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| 6 | 1, 5 | mpd 13 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 103 = wceq 1284 ∈ wcel 1433 ∀wral 2348 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-v 2603 |
| This theorem is referenced by: uzsinds 9428 iseqz 9469 bezoutlemex 10390 bezoutlemzz 10391 bezoutlemmo 10395 bezoutlemle 10397 bezoutlemsup 10398 |
| Copyright terms: Public domain | W3C validator |