ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqz GIF version

Theorem iseqz 9469
Description: If the operation + has an absorbing element 𝑍 (a.k.a. zero element), then any sequence containing a 𝑍 evaluates to 𝑍. (Contributed by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
iseqhomo.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
iseqhomo.2 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
iseqhomo.s (𝜑𝑆𝑉)
iseqz.3 ((𝜑𝑥𝑆) → (𝑍 + 𝑥) = 𝑍)
iseqz.4 ((𝜑𝑥𝑆) → (𝑥 + 𝑍) = 𝑍)
iseqz.5 (𝜑𝐾 ∈ (𝑀...𝑁))
iseqz.6 (𝜑𝑁𝑉)
iseqz.7 (𝜑 → (𝐹𝐾) = 𝑍)
Assertion
Ref Expression
iseqz (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = 𝑍)
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝐾,𝑦   𝑥, + ,𝑦   𝑥,𝑆,𝑦   𝑥,𝑍,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem iseqz
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqz.5 . . 3 (𝜑𝐾 ∈ (𝑀...𝑁))
2 elfzuz3 9042 . . 3 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐾))
31, 2syl 14 . 2 (𝜑𝑁 ∈ (ℤ𝐾))
4 fveq2 5198 . . . . 5 (𝑤 = 𝐾 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘𝐾))
54eqeq1d 2089 . . . 4 (𝑤 = 𝐾 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = 𝑍 ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = 𝑍))
65imbi2d 228 . . 3 (𝑤 = 𝐾 → ((𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = 𝑍) ↔ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = 𝑍)))
7 fveq2 5198 . . . . 5 (𝑤 = 𝑘 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘𝑘))
87eqeq1d 2089 . . . 4 (𝑤 = 𝑘 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = 𝑍 ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝑘) = 𝑍))
98imbi2d 228 . . 3 (𝑤 = 𝑘 → ((𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = 𝑍) ↔ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑘) = 𝑍)))
10 fveq2 5198 . . . . 5 (𝑤 = (𝑘 + 1) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)))
1110eqeq1d 2089 . . . 4 (𝑤 = (𝑘 + 1) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = 𝑍 ↔ (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)) = 𝑍))
1211imbi2d 228 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = 𝑍) ↔ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)) = 𝑍)))
13 fveq2 5198 . . . . 5 (𝑤 = 𝑁 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘𝑁))
1413eqeq1d 2089 . . . 4 (𝑤 = 𝑁 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = 𝑍 ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = 𝑍))
1514imbi2d 228 . . 3 (𝑤 = 𝑁 → ((𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = 𝑍) ↔ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = 𝑍)))
16 elfzuz 9041 . . . . . . . . . 10 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
171, 16syl 14 . . . . . . . . 9 (𝜑𝐾 ∈ (ℤ𝑀))
18 eluzelz 8628 . . . . . . . . 9 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ ℤ)
1917, 18syl 14 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
20 iseqhomo.s . . . . . . . 8 (𝜑𝑆𝑉)
21 simpr 108 . . . . . . . . . 10 ((𝜑𝑥 ∈ (ℤ𝐾)) → 𝑥 ∈ (ℤ𝐾))
2217adantr 270 . . . . . . . . . 10 ((𝜑𝑥 ∈ (ℤ𝐾)) → 𝐾 ∈ (ℤ𝑀))
23 uztrn 8635 . . . . . . . . . 10 ((𝑥 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑀)) → 𝑥 ∈ (ℤ𝑀))
2421, 22, 23syl2anc 403 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ𝐾)) → 𝑥 ∈ (ℤ𝑀))
25 iseqhomo.2 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
2624, 25syldan 276 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝐾)) → (𝐹𝑥) ∈ 𝑆)
27 iseqhomo.1 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2819, 20, 26, 27iseq1 9442 . . . . . . 7 (𝜑 → (seq𝐾( + , 𝐹, 𝑆)‘𝐾) = (𝐹𝐾))
29 iseqz.7 . . . . . . 7 (𝜑 → (𝐹𝐾) = 𝑍)
3028, 29eqtrd 2113 . . . . . 6 (𝜑 → (seq𝐾( + , 𝐹, 𝑆)‘𝐾) = 𝑍)
31 iseqeq1 9434 . . . . . . . 8 (𝐾 = 𝑀 → seq𝐾( + , 𝐹, 𝑆) = seq𝑀( + , 𝐹, 𝑆))
3231fveq1d 5200 . . . . . . 7 (𝐾 = 𝑀 → (seq𝐾( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘𝐾))
3332eqeq1d 2089 . . . . . 6 (𝐾 = 𝑀 → ((seq𝐾( + , 𝐹, 𝑆)‘𝐾) = 𝑍 ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = 𝑍))
3430, 33syl5ibcom 153 . . . . 5 (𝜑 → (𝐾 = 𝑀 → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = 𝑍))
35 eluzel2 8624 . . . . . . . . . 10 (𝐾 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
3617, 35syl 14 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
3736adantr 270 . . . . . . . 8 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 ∈ ℤ)
38 simpr 108 . . . . . . . 8 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → 𝐾 ∈ (ℤ‘(𝑀 + 1)))
3920adantr 270 . . . . . . . 8 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → 𝑆𝑉)
4025adantlr 460 . . . . . . . 8 (((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
4127adantlr 460 . . . . . . . 8 (((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
4237, 38, 39, 40, 41iseqm1 9447 . . . . . . 7 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = ((seq𝑀( + , 𝐹, 𝑆)‘(𝐾 − 1)) + (𝐹𝐾)))
4329adantr 270 . . . . . . . 8 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝐾) = 𝑍)
4443oveq2d 5548 . . . . . . 7 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → ((seq𝑀( + , 𝐹, 𝑆)‘(𝐾 − 1)) + (𝐹𝐾)) = ((seq𝑀( + , 𝐹, 𝑆)‘(𝐾 − 1)) + 𝑍))
45 oveq1 5539 . . . . . . . . 9 (𝑥 = (seq𝑀( + , 𝐹, 𝑆)‘(𝐾 − 1)) → (𝑥 + 𝑍) = ((seq𝑀( + , 𝐹, 𝑆)‘(𝐾 − 1)) + 𝑍))
4645eqeq1d 2089 . . . . . . . 8 (𝑥 = (seq𝑀( + , 𝐹, 𝑆)‘(𝐾 − 1)) → ((𝑥 + 𝑍) = 𝑍 ↔ ((seq𝑀( + , 𝐹, 𝑆)‘(𝐾 − 1)) + 𝑍) = 𝑍))
47 iseqz.4 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (𝑥 + 𝑍) = 𝑍)
4847ralrimiva 2434 . . . . . . . . 9 (𝜑 → ∀𝑥𝑆 (𝑥 + 𝑍) = 𝑍)
4948adantr 270 . . . . . . . 8 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → ∀𝑥𝑆 (𝑥 + 𝑍) = 𝑍)
50 eluzp1m1 8642 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ (ℤ‘(𝑀 + 1))) → (𝐾 − 1) ∈ (ℤ𝑀))
5136, 50sylan 277 . . . . . . . . 9 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → (𝐾 − 1) ∈ (ℤ𝑀))
5251, 39, 40, 41iseqcl 9443 . . . . . . . 8 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹, 𝑆)‘(𝐾 − 1)) ∈ 𝑆)
5346, 49, 52rspcdva 2707 . . . . . . 7 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → ((seq𝑀( + , 𝐹, 𝑆)‘(𝐾 − 1)) + 𝑍) = 𝑍)
5442, 44, 533eqtrd 2117 . . . . . 6 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = 𝑍)
5554ex 113 . . . . 5 (𝜑 → (𝐾 ∈ (ℤ‘(𝑀 + 1)) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = 𝑍))
56 uzp1 8652 . . . . . 6 (𝐾 ∈ (ℤ𝑀) → (𝐾 = 𝑀𝐾 ∈ (ℤ‘(𝑀 + 1))))
5717, 56syl 14 . . . . 5 (𝜑 → (𝐾 = 𝑀𝐾 ∈ (ℤ‘(𝑀 + 1))))
5834, 55, 57mpjaod 670 . . . 4 (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = 𝑍)
5958a1i 9 . . 3 (𝐾 ∈ ℤ → (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = 𝑍))
60 simpr 108 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝐾)) → 𝑘 ∈ (ℤ𝐾))
6117adantr 270 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝐾)) → 𝐾 ∈ (ℤ𝑀))
62 uztrn 8635 . . . . . . . . . 10 ((𝑘 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑀)) → 𝑘 ∈ (ℤ𝑀))
6360, 61, 62syl2anc 403 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝐾)) → 𝑘 ∈ (ℤ𝑀))
6420adantr 270 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝐾)) → 𝑆𝑉)
6525adantlr 460 . . . . . . . . 9 (((𝜑𝑘 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
6627adantlr 460 . . . . . . . . 9 (((𝜑𝑘 ∈ (ℤ𝐾)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
6763, 64, 65, 66iseqp1 9445 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑘) + (𝐹‘(𝑘 + 1))))
6867adantr 270 . . . . . . 7 (((𝜑𝑘 ∈ (ℤ𝐾)) ∧ (seq𝑀( + , 𝐹, 𝑆)‘𝑘) = 𝑍) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑘) + (𝐹‘(𝑘 + 1))))
69 simpr 108 . . . . . . . 8 (((𝜑𝑘 ∈ (ℤ𝐾)) ∧ (seq𝑀( + , 𝐹, 𝑆)‘𝑘) = 𝑍) → (seq𝑀( + , 𝐹, 𝑆)‘𝑘) = 𝑍)
7069oveq1d 5547 . . . . . . 7 (((𝜑𝑘 ∈ (ℤ𝐾)) ∧ (seq𝑀( + , 𝐹, 𝑆)‘𝑘) = 𝑍) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑘) + (𝐹‘(𝑘 + 1))) = (𝑍 + (𝐹‘(𝑘 + 1))))
71 oveq2 5540 . . . . . . . . . 10 (𝑥 = (𝐹‘(𝑘 + 1)) → (𝑍 + 𝑥) = (𝑍 + (𝐹‘(𝑘 + 1))))
7271eqeq1d 2089 . . . . . . . . 9 (𝑥 = (𝐹‘(𝑘 + 1)) → ((𝑍 + 𝑥) = 𝑍 ↔ (𝑍 + (𝐹‘(𝑘 + 1))) = 𝑍))
73 iseqz.3 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (𝑍 + 𝑥) = 𝑍)
7473ralrimiva 2434 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑆 (𝑍 + 𝑥) = 𝑍)
7574adantr 270 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝐾)) → ∀𝑥𝑆 (𝑍 + 𝑥) = 𝑍)
76 fveq2 5198 . . . . . . . . . . 11 (𝑥 = (𝑘 + 1) → (𝐹𝑥) = (𝐹‘(𝑘 + 1)))
7776eleq1d 2147 . . . . . . . . . 10 (𝑥 = (𝑘 + 1) → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹‘(𝑘 + 1)) ∈ 𝑆))
7825ralrimiva 2434 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ 𝑆)
7978adantr 270 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝐾)) → ∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ 𝑆)
80 peano2uz 8671 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑀) → (𝑘 + 1) ∈ (ℤ𝑀))
8163, 80syl 14 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝑘 + 1) ∈ (ℤ𝑀))
8277, 79, 81rspcdva 2707 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐹‘(𝑘 + 1)) ∈ 𝑆)
8372, 75, 82rspcdva 2707 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝑍 + (𝐹‘(𝑘 + 1))) = 𝑍)
8483adantr 270 . . . . . . 7 (((𝜑𝑘 ∈ (ℤ𝐾)) ∧ (seq𝑀( + , 𝐹, 𝑆)‘𝑘) = 𝑍) → (𝑍 + (𝐹‘(𝑘 + 1))) = 𝑍)
8568, 70, 843eqtrd 2117 . . . . . 6 (((𝜑𝑘 ∈ (ℤ𝐾)) ∧ (seq𝑀( + , 𝐹, 𝑆)‘𝑘) = 𝑍) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)) = 𝑍)
8685ex 113 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑘) = 𝑍 → (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)) = 𝑍))
8786expcom 114 . . . 4 (𝑘 ∈ (ℤ𝐾) → (𝜑 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑘) = 𝑍 → (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)) = 𝑍)))
8887a2d 26 . . 3 (𝑘 ∈ (ℤ𝐾) → ((𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑘) = 𝑍) → (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)) = 𝑍)))
896, 9, 12, 15, 59, 88uzind4 8676 . 2 (𝑁 ∈ (ℤ𝐾) → (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = 𝑍))
903, 89mpcom 36 1 (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = 𝑍)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wo 661   = wceq 1284  wcel 1433  wral 2348  cfv 4922  (class class class)co 5532  1c1 6982   + caddc 6984  cmin 7279  cz 8351  cuz 8619  ...cfz 9029  seqcseq 9431
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-fz 9030  df-iseq 9432
This theorem is referenced by:  ibcval5  9690
  Copyright terms: Public domain W3C validator