Step | Hyp | Ref
| Expression |
1 | | iseqz.5 |
. . 3
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
2 | | elfzuz3 9042 |
. . 3
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) |
3 | 1, 2 | syl 14 |
. 2
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝐾)) |
4 | | fveq2 5198 |
. . . . 5
⊢ (𝑤 = 𝐾 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘𝐾)) |
5 | 4 | eqeq1d 2089 |
. . . 4
⊢ (𝑤 = 𝐾 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = 𝑍 ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = 𝑍)) |
6 | 5 | imbi2d 228 |
. . 3
⊢ (𝑤 = 𝐾 → ((𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = 𝑍) ↔ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = 𝑍))) |
7 | | fveq2 5198 |
. . . . 5
⊢ (𝑤 = 𝑘 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘𝑘)) |
8 | 7 | eqeq1d 2089 |
. . . 4
⊢ (𝑤 = 𝑘 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = 𝑍 ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝑘) = 𝑍)) |
9 | 8 | imbi2d 228 |
. . 3
⊢ (𝑤 = 𝑘 → ((𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = 𝑍) ↔ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑘) = 𝑍))) |
10 | | fveq2 5198 |
. . . . 5
⊢ (𝑤 = (𝑘 + 1) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1))) |
11 | 10 | eqeq1d 2089 |
. . . 4
⊢ (𝑤 = (𝑘 + 1) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = 𝑍 ↔ (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)) = 𝑍)) |
12 | 11 | imbi2d 228 |
. . 3
⊢ (𝑤 = (𝑘 + 1) → ((𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = 𝑍) ↔ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)) = 𝑍))) |
13 | | fveq2 5198 |
. . . . 5
⊢ (𝑤 = 𝑁 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘𝑁)) |
14 | 13 | eqeq1d 2089 |
. . . 4
⊢ (𝑤 = 𝑁 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = 𝑍 ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = 𝑍)) |
15 | 14 | imbi2d 228 |
. . 3
⊢ (𝑤 = 𝑁 → ((𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = 𝑍) ↔ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = 𝑍))) |
16 | | elfzuz 9041 |
. . . . . . . . . 10
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) |
17 | 1, 16 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) |
18 | | eluzelz 8628 |
. . . . . . . . 9
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → 𝐾 ∈ ℤ) |
19 | 17, 18 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ ℤ) |
20 | | iseqhomo.s |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ 𝑉) |
21 | | simpr 108 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → 𝑥 ∈ (ℤ≥‘𝐾)) |
22 | 17 | adantr 270 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → 𝐾 ∈ (ℤ≥‘𝑀)) |
23 | | uztrn 8635 |
. . . . . . . . . 10
⊢ ((𝑥 ∈
(ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑀)) → 𝑥 ∈ (ℤ≥‘𝑀)) |
24 | 21, 22, 23 | syl2anc 403 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → 𝑥 ∈ (ℤ≥‘𝑀)) |
25 | | iseqhomo.2 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
26 | 24, 25 | syldan 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑥) ∈ 𝑆) |
27 | | iseqhomo.1 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
28 | 19, 20, 26, 27 | iseq1 9442 |
. . . . . . 7
⊢ (𝜑 → (seq𝐾( + , 𝐹, 𝑆)‘𝐾) = (𝐹‘𝐾)) |
29 | | iseqz.7 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘𝐾) = 𝑍) |
30 | 28, 29 | eqtrd 2113 |
. . . . . 6
⊢ (𝜑 → (seq𝐾( + , 𝐹, 𝑆)‘𝐾) = 𝑍) |
31 | | iseqeq1 9434 |
. . . . . . . 8
⊢ (𝐾 = 𝑀 → seq𝐾( + , 𝐹, 𝑆) = seq𝑀( + , 𝐹, 𝑆)) |
32 | 31 | fveq1d 5200 |
. . . . . . 7
⊢ (𝐾 = 𝑀 → (seq𝐾( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘𝐾)) |
33 | 32 | eqeq1d 2089 |
. . . . . 6
⊢ (𝐾 = 𝑀 → ((seq𝐾( + , 𝐹, 𝑆)‘𝐾) = 𝑍 ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = 𝑍)) |
34 | 30, 33 | syl5ibcom 153 |
. . . . 5
⊢ (𝜑 → (𝐾 = 𝑀 → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = 𝑍)) |
35 | | eluzel2 8624 |
. . . . . . . . . 10
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
36 | 17, 35 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℤ) |
37 | 36 | adantr 270 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑀 ∈ ℤ) |
38 | | simpr 108 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘(𝑀 + 1))) → 𝐾 ∈ (ℤ≥‘(𝑀 + 1))) |
39 | 20 | adantr 270 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑆 ∈ 𝑉) |
40 | 25 | adantlr 460 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐾 ∈ (ℤ≥‘(𝑀 + 1))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
41 | 27 | adantlr 460 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐾 ∈ (ℤ≥‘(𝑀 + 1))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
42 | 37, 38, 39, 40, 41 | iseqm1 9447 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘(𝑀 + 1))) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = ((seq𝑀( + , 𝐹, 𝑆)‘(𝐾 − 1)) + (𝐹‘𝐾))) |
43 | 29 | adantr 270 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝐾) = 𝑍) |
44 | 43 | oveq2d 5548 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘(𝑀 + 1))) → ((seq𝑀( + , 𝐹, 𝑆)‘(𝐾 − 1)) + (𝐹‘𝐾)) = ((seq𝑀( + , 𝐹, 𝑆)‘(𝐾 − 1)) + 𝑍)) |
45 | | oveq1 5539 |
. . . . . . . . 9
⊢ (𝑥 = (seq𝑀( + , 𝐹, 𝑆)‘(𝐾 − 1)) → (𝑥 + 𝑍) = ((seq𝑀( + , 𝐹, 𝑆)‘(𝐾 − 1)) + 𝑍)) |
46 | 45 | eqeq1d 2089 |
. . . . . . . 8
⊢ (𝑥 = (seq𝑀( + , 𝐹, 𝑆)‘(𝐾 − 1)) → ((𝑥 + 𝑍) = 𝑍 ↔ ((seq𝑀( + , 𝐹, 𝑆)‘(𝐾 − 1)) + 𝑍) = 𝑍)) |
47 | | iseqz.4 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥 + 𝑍) = 𝑍) |
48 | 47 | ralrimiva 2434 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 (𝑥 + 𝑍) = 𝑍) |
49 | 48 | adantr 270 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘(𝑀 + 1))) → ∀𝑥 ∈ 𝑆 (𝑥 + 𝑍) = 𝑍) |
50 | | eluzp1m1 8642 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈
(ℤ≥‘(𝑀 + 1))) → (𝐾 − 1) ∈
(ℤ≥‘𝑀)) |
51 | 36, 50 | sylan 277 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐾 − 1) ∈
(ℤ≥‘𝑀)) |
52 | 51, 39, 40, 41 | iseqcl 9443 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘(𝑀 + 1))) → (seq𝑀( + , 𝐹, 𝑆)‘(𝐾 − 1)) ∈ 𝑆) |
53 | 46, 49, 52 | rspcdva 2707 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘(𝑀 + 1))) → ((seq𝑀( + , 𝐹, 𝑆)‘(𝐾 − 1)) + 𝑍) = 𝑍) |
54 | 42, 44, 53 | 3eqtrd 2117 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘(𝑀 + 1))) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = 𝑍) |
55 | 54 | ex 113 |
. . . . 5
⊢ (𝜑 → (𝐾 ∈ (ℤ≥‘(𝑀 + 1)) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = 𝑍)) |
56 | | uzp1 8652 |
. . . . . 6
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → (𝐾 = 𝑀 ∨ 𝐾 ∈ (ℤ≥‘(𝑀 + 1)))) |
57 | 17, 56 | syl 14 |
. . . . 5
⊢ (𝜑 → (𝐾 = 𝑀 ∨ 𝐾 ∈ (ℤ≥‘(𝑀 + 1)))) |
58 | 34, 55, 57 | mpjaod 670 |
. . . 4
⊢ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = 𝑍) |
59 | 58 | a1i 9 |
. . 3
⊢ (𝐾 ∈ ℤ → (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = 𝑍)) |
60 | | simpr 108 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → 𝑘 ∈ (ℤ≥‘𝐾)) |
61 | 17 | adantr 270 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → 𝐾 ∈ (ℤ≥‘𝑀)) |
62 | | uztrn 8635 |
. . . . . . . . . 10
⊢ ((𝑘 ∈
(ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
63 | 60, 61, 62 | syl2anc 403 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
64 | 20 | adantr 270 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → 𝑆 ∈ 𝑉) |
65 | 25 | adantlr 460 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
66 | 27 | adantlr 460 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
67 | 63, 64, 65, 66 | iseqp1 9445 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑘) + (𝐹‘(𝑘 + 1)))) |
68 | 67 | adantr 270 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) ∧ (seq𝑀( + , 𝐹, 𝑆)‘𝑘) = 𝑍) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑘) + (𝐹‘(𝑘 + 1)))) |
69 | | simpr 108 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) ∧ (seq𝑀( + , 𝐹, 𝑆)‘𝑘) = 𝑍) → (seq𝑀( + , 𝐹, 𝑆)‘𝑘) = 𝑍) |
70 | 69 | oveq1d 5547 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) ∧ (seq𝑀( + , 𝐹, 𝑆)‘𝑘) = 𝑍) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑘) + (𝐹‘(𝑘 + 1))) = (𝑍 + (𝐹‘(𝑘 + 1)))) |
71 | | oveq2 5540 |
. . . . . . . . . 10
⊢ (𝑥 = (𝐹‘(𝑘 + 1)) → (𝑍 + 𝑥) = (𝑍 + (𝐹‘(𝑘 + 1)))) |
72 | 71 | eqeq1d 2089 |
. . . . . . . . 9
⊢ (𝑥 = (𝐹‘(𝑘 + 1)) → ((𝑍 + 𝑥) = 𝑍 ↔ (𝑍 + (𝐹‘(𝑘 + 1))) = 𝑍)) |
73 | | iseqz.3 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑍 + 𝑥) = 𝑍) |
74 | 73 | ralrimiva 2434 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 (𝑍 + 𝑥) = 𝑍) |
75 | 74 | adantr 270 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → ∀𝑥 ∈ 𝑆 (𝑍 + 𝑥) = 𝑍) |
76 | | fveq2 5198 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑘 + 1) → (𝐹‘𝑥) = (𝐹‘(𝑘 + 1))) |
77 | 76 | eleq1d 2147 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑘 + 1) → ((𝐹‘𝑥) ∈ 𝑆 ↔ (𝐹‘(𝑘 + 1)) ∈ 𝑆)) |
78 | 25 | ralrimiva 2434 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐹‘𝑥) ∈ 𝑆) |
79 | 78 | adantr 270 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → ∀𝑥 ∈
(ℤ≥‘𝑀)(𝐹‘𝑥) ∈ 𝑆) |
80 | | peano2uz 8671 |
. . . . . . . . . . 11
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → (𝑘 + 1) ∈
(ℤ≥‘𝑀)) |
81 | 63, 80 | syl 14 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝑘 + 1) ∈
(ℤ≥‘𝑀)) |
82 | 77, 79, 81 | rspcdva 2707 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝐹‘(𝑘 + 1)) ∈ 𝑆) |
83 | 72, 75, 82 | rspcdva 2707 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝑍 + (𝐹‘(𝑘 + 1))) = 𝑍) |
84 | 83 | adantr 270 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) ∧ (seq𝑀( + , 𝐹, 𝑆)‘𝑘) = 𝑍) → (𝑍 + (𝐹‘(𝑘 + 1))) = 𝑍) |
85 | 68, 70, 84 | 3eqtrd 2117 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) ∧ (seq𝑀( + , 𝐹, 𝑆)‘𝑘) = 𝑍) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)) = 𝑍) |
86 | 85 | ex 113 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑘) = 𝑍 → (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)) = 𝑍)) |
87 | 86 | expcom 114 |
. . . 4
⊢ (𝑘 ∈
(ℤ≥‘𝐾) → (𝜑 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑘) = 𝑍 → (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)) = 𝑍))) |
88 | 87 | a2d 26 |
. . 3
⊢ (𝑘 ∈
(ℤ≥‘𝐾) → ((𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑘) = 𝑍) → (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)) = 𝑍))) |
89 | 6, 9, 12, 15, 59, 88 | uzind4 8676 |
. 2
⊢ (𝑁 ∈
(ℤ≥‘𝐾) → (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = 𝑍)) |
90 | 3, 89 | mpcom 36 |
1
⊢ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = 𝑍) |