ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemsup GIF version

Theorem bezoutlemsup 10398
Description: Lemma for Bézout's identity. The number satisfying the greatest common divisor condition is the supremum of divisors of both 𝐴 and 𝐵. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.)
Hypotheses
Ref Expression
bezoutlemgcd.1 (𝜑𝐴 ∈ ℤ)
bezoutlemgcd.2 (𝜑𝐵 ∈ ℤ)
bezoutlemgcd.3 (𝜑𝐷 ∈ ℕ0)
bezoutlemgcd.4 (𝜑 → ∀𝑧 ∈ ℤ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)))
bezoutlemgcd.5 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
Assertion
Ref Expression
bezoutlemsup (𝜑𝐷 = sup({𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}, ℝ, < ))
Distinct variable groups:   𝑧,𝐷   𝑧,𝐴   𝑧,𝐵   𝜑,𝑧

Proof of Theorem bezoutlemsup
Dummy variables 𝑤 𝑓 𝑔 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bezoutlemgcd.3 . . . 4 (𝜑𝐷 ∈ ℕ0)
21nn0red 8342 . . 3 (𝜑𝐷 ∈ ℝ)
3 elrabi 2746 . . . . . . 7 (𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)} → 𝑤 ∈ ℤ)
43adantl 271 . . . . . 6 ((𝜑𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}) → 𝑤 ∈ ℤ)
54zred 8469 . . . . 5 ((𝜑𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}) → 𝑤 ∈ ℝ)
62adantr 270 . . . . 5 ((𝜑𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}) → 𝐷 ∈ ℝ)
7 breq1 3788 . . . . . . . . . 10 (𝑧 = 𝑤 → (𝑧𝐴𝑤𝐴))
8 breq1 3788 . . . . . . . . . 10 (𝑧 = 𝑤 → (𝑧𝐵𝑤𝐵))
97, 8anbi12d 456 . . . . . . . . 9 (𝑧 = 𝑤 → ((𝑧𝐴𝑧𝐵) ↔ (𝑤𝐴𝑤𝐵)))
109elrab 2749 . . . . . . . 8 (𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)} ↔ (𝑤 ∈ ℤ ∧ (𝑤𝐴𝑤𝐵)))
1110simprbi 269 . . . . . . 7 (𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)} → (𝑤𝐴𝑤𝐵))
1211adantl 271 . . . . . 6 ((𝜑𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}) → (𝑤𝐴𝑤𝐵))
13 breq1 3788 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧𝐷𝑤𝐷))
149, 13imbi12d 232 . . . . . . . 8 (𝑧 = 𝑤 → (((𝑧𝐴𝑧𝐵) → 𝑧𝐷) ↔ ((𝑤𝐴𝑤𝐵) → 𝑤𝐷)))
15 bezoutlemgcd.1 . . . . . . . . . 10 (𝜑𝐴 ∈ ℤ)
16 bezoutlemgcd.2 . . . . . . . . . 10 (𝜑𝐵 ∈ ℤ)
17 bezoutlemgcd.4 . . . . . . . . . 10 (𝜑 → ∀𝑧 ∈ ℤ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)))
18 bezoutlemgcd.5 . . . . . . . . . 10 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
1915, 16, 1, 17, 18bezoutlemle 10397 . . . . . . . . 9 (𝜑 → ∀𝑧 ∈ ℤ ((𝑧𝐴𝑧𝐵) → 𝑧𝐷))
2019adantr 270 . . . . . . . 8 ((𝜑𝑤 ∈ ℤ) → ∀𝑧 ∈ ℤ ((𝑧𝐴𝑧𝐵) → 𝑧𝐷))
21 simpr 108 . . . . . . . 8 ((𝜑𝑤 ∈ ℤ) → 𝑤 ∈ ℤ)
2214, 20, 21rspcdva 2707 . . . . . . 7 ((𝜑𝑤 ∈ ℤ) → ((𝑤𝐴𝑤𝐵) → 𝑤𝐷))
233, 22sylan2 280 . . . . . 6 ((𝜑𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}) → ((𝑤𝐴𝑤𝐵) → 𝑤𝐷))
2412, 23mpd 13 . . . . 5 ((𝜑𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}) → 𝑤𝐷)
255, 6, 24lensymd 7231 . . . 4 ((𝜑𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}) → ¬ 𝐷 < 𝑤)
2625ralrimiva 2434 . . 3 (𝜑 → ∀𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)} ¬ 𝐷 < 𝑤)
271nn0zd 8467 . . . . . . . . . 10 (𝜑𝐷 ∈ ℤ)
28 iddvds 10208 . . . . . . . . . 10 (𝐷 ∈ ℤ → 𝐷𝐷)
2927, 28syl 14 . . . . . . . . 9 (𝜑𝐷𝐷)
30 breq1 3788 . . . . . . . . . . 11 (𝑧 = 𝐷 → (𝑧𝐷𝐷𝐷))
31 breq1 3788 . . . . . . . . . . . 12 (𝑧 = 𝐷 → (𝑧𝐴𝐷𝐴))
32 breq1 3788 . . . . . . . . . . . 12 (𝑧 = 𝐷 → (𝑧𝐵𝐷𝐵))
3331, 32anbi12d 456 . . . . . . . . . . 11 (𝑧 = 𝐷 → ((𝑧𝐴𝑧𝐵) ↔ (𝐷𝐴𝐷𝐵)))
3430, 33bibi12d 233 . . . . . . . . . 10 (𝑧 = 𝐷 → ((𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)) ↔ (𝐷𝐷 ↔ (𝐷𝐴𝐷𝐵))))
3534, 17, 27rspcdva 2707 . . . . . . . . 9 (𝜑 → (𝐷𝐷 ↔ (𝐷𝐴𝐷𝐵)))
3629, 35mpbid 145 . . . . . . . 8 (𝜑 → (𝐷𝐴𝐷𝐵))
3736ad2antrr 471 . . . . . . 7 (((𝜑𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → (𝐷𝐴𝐷𝐵))
381ad2antrr 471 . . . . . . . . 9 (((𝜑𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → 𝐷 ∈ ℕ0)
3938nn0zd 8467 . . . . . . . 8 (((𝜑𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → 𝐷 ∈ ℤ)
4033elrab3 2750 . . . . . . . 8 (𝐷 ∈ ℤ → (𝐷 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)} ↔ (𝐷𝐴𝐷𝐵)))
4139, 40syl 14 . . . . . . 7 (((𝜑𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → (𝐷 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)} ↔ (𝐷𝐴𝐷𝐵)))
4237, 41mpbird 165 . . . . . 6 (((𝜑𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → 𝐷 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)})
43 breq2 3789 . . . . . . 7 (𝑢 = 𝐷 → (𝑤 < 𝑢𝑤 < 𝐷))
4443rspcev 2701 . . . . . 6 ((𝐷 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)} ∧ 𝑤 < 𝐷) → ∃𝑢 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}𝑤 < 𝑢)
4542, 44sylancom 411 . . . . 5 (((𝜑𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → ∃𝑢 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}𝑤 < 𝑢)
4645ex 113 . . . 4 ((𝜑𝑤 ∈ ℝ) → (𝑤 < 𝐷 → ∃𝑢 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}𝑤 < 𝑢))
4746ralrimiva 2434 . . 3 (𝜑 → ∀𝑤 ∈ ℝ (𝑤 < 𝐷 → ∃𝑢 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}𝑤 < 𝑢))
48 lttri3 7191 . . . . 5 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
4948adantl 271 . . . 4 ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
5049eqsupti 6409 . . 3 (𝜑 → ((𝐷 ∈ ℝ ∧ ∀𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)} ¬ 𝐷 < 𝑤 ∧ ∀𝑤 ∈ ℝ (𝑤 < 𝐷 → ∃𝑢 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}𝑤 < 𝑢)) → sup({𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}, ℝ, < ) = 𝐷))
512, 26, 47, 50mp3and 1271 . 2 (𝜑 → sup({𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}, ℝ, < ) = 𝐷)
5251eqcomd 2086 1 (𝜑𝐷 = sup({𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}, ℝ, < ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  wral 2348  wrex 2349  {crab 2352   class class class wbr 3785  supcsup 6395  cr 6980  0cc0 6981   < clt 7153  cle 7154  0cn0 8288  cz 8351  cdvds 10195
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-sup 6397  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-n0 8289  df-z 8352  df-q 8705  df-dvds 10196
This theorem is referenced by:  dfgcd3  10399
  Copyright terms: Public domain W3C validator