ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspcdva Unicode version

Theorem rspcdva 2707
Description: Restricted specialization, using implicit substitution. (Contributed by Thierry Arnoux, 21-Jun-2020.)
Hypotheses
Ref Expression
rspcdva.1  |-  ( x  =  C  ->  ( ps 
<->  ch ) )
rspcdva.2  |-  ( ph  ->  A. x  e.  A  ps )
rspcdva.3  |-  ( ph  ->  C  e.  A )
Assertion
Ref Expression
rspcdva  |-  ( ph  ->  ch )
Distinct variable groups:    x, A    x, C    ch, x    ph, x
Allowed substitution hint:    ps( x)

Proof of Theorem rspcdva
StepHypRef Expression
1 rspcdva.2 . 2  |-  ( ph  ->  A. x  e.  A  ps )
2 rspcdva.3 . . 3  |-  ( ph  ->  C  e.  A )
3 rspcdva.1 . . . 4  |-  ( x  =  C  ->  ( ps 
<->  ch ) )
43adantl 271 . . 3  |-  ( (
ph  /\  x  =  C )  ->  ( ps 
<->  ch ) )
52, 4rspcdv 2704 . 2  |-  ( ph  ->  ( A. x  e.  A  ps  ->  ch ) )
61, 5mpd 13 1  |-  ( ph  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    = wceq 1284    e. wcel 1433   A.wral 2348
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603
This theorem is referenced by:  uzsinds  9428  iseqz  9469  bezoutlemex  10390  bezoutlemzz  10391  bezoutlemmo  10395  bezoutlemle  10397  bezoutlemsup  10398
  Copyright terms: Public domain W3C validator