ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp1d GIF version

Theorem simp1d 950
Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.)
Hypothesis
Ref Expression
3simp1d.1 (𝜑 → (𝜓𝜒𝜃))
Assertion
Ref Expression
simp1d (𝜑𝜓)

Proof of Theorem simp1d
StepHypRef Expression
1 3simp1d.1 . 2 (𝜑 → (𝜓𝜒𝜃))
2 simp1 938 . 2 ((𝜓𝜒𝜃) → 𝜓)
31, 2syl 14 1 (𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 919
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104
This theorem depends on definitions:  df-bi 115  df-3an 921
This theorem is referenced by:  simp1bi  953  erinxp  6203  addcanprleml  6804  addcanprlemu  6805  ltmprr  6832  lelttrdi  7530  ixxdisj  8926  ixxss1  8927  ixxss2  8928  ixxss12  8929  iccss2  8967  iocssre  8976  icossre  8977  iccssre  8978  icodisj  9014  iccf1o  9026  fzen  9062  ioom  9269  intfracq  9322  flqdiv  9323  mulqaddmodid  9366  modsumfzodifsn  9398  addmodlteq  9400  remul  9759
  Copyright terms: Public domain W3C validator