ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ioom GIF version

Theorem ioom 9269
Description: An open interval of extended reals is inhabited iff the lower argument is less than the upper argument. (Contributed by Jim Kingdon, 27-Nov-2021.)
Assertion
Ref Expression
ioom ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∃𝑥 𝑥 ∈ (𝐴(,)𝐵) ↔ 𝐴 < 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ioom
StepHypRef Expression
1 elioo3g 8933 . . . . . . . 8 (𝑥 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ*) ∧ (𝐴 < 𝑥𝑥 < 𝐵)))
21biimpi 118 . . . . . . 7 (𝑥 ∈ (𝐴(,)𝐵) → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ*) ∧ (𝐴 < 𝑥𝑥 < 𝐵)))
32simpld 110 . . . . . 6 (𝑥 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ*))
43simp1d 950 . . . . 5 (𝑥 ∈ (𝐴(,)𝐵) → 𝐴 ∈ ℝ*)
53simp3d 952 . . . . 5 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ*)
63simp2d 951 . . . . 5 (𝑥 ∈ (𝐴(,)𝐵) → 𝐵 ∈ ℝ*)
72simprd 112 . . . . . 6 (𝑥 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑥𝑥 < 𝐵))
87simpld 110 . . . . 5 (𝑥 ∈ (𝐴(,)𝐵) → 𝐴 < 𝑥)
97simprd 112 . . . . 5 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 < 𝐵)
104, 5, 6, 8, 9xrlttrd 8879 . . . 4 (𝑥 ∈ (𝐴(,)𝐵) → 𝐴 < 𝐵)
1110a1i 9 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴(,)𝐵) → 𝐴 < 𝐵))
1211exlimdv 1740 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∃𝑥 𝑥 ∈ (𝐴(,)𝐵) → 𝐴 < 𝐵))
13 qbtwnxr 9266 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
14 df-rex 2354 . . . . 5 (∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵) ↔ ∃𝑥(𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵)))
1513, 14sylib 120 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑥(𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵)))
16 simpl1 941 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵))) → 𝐴 ∈ ℝ*)
17 simpl2 942 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵))) → 𝐵 ∈ ℝ*)
18 qre 8710 . . . . . . . . 9 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
1918ad2antrl 473 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵))) → 𝑥 ∈ ℝ)
2019rexrd 7168 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵))) → 𝑥 ∈ ℝ*)
21 simprrl 505 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵))) → 𝐴 < 𝑥)
22 simprrr 506 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵))) → 𝑥 < 𝐵)
231biimpri 131 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ*) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → 𝑥 ∈ (𝐴(,)𝐵))
2416, 17, 20, 21, 22, 23syl32anc 1177 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵))) → 𝑥 ∈ (𝐴(,)𝐵))
2524ex 113 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → 𝑥 ∈ (𝐴(,)𝐵)))
2625eximdv 1801 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → (∃𝑥(𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → ∃𝑥 𝑥 ∈ (𝐴(,)𝐵)))
2715, 26mpd 13 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑥 𝑥 ∈ (𝐴(,)𝐵))
28273expia 1140 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 𝑥 ∈ (𝐴(,)𝐵)))
2912, 28impbid 127 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∃𝑥 𝑥 ∈ (𝐴(,)𝐵) ↔ 𝐴 < 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 919  wex 1421  wcel 1433  wrex 2349   class class class wbr 3785  (class class class)co 5532  cr 6980  *cxr 7152   < clt 7153  cq 8704  (,)cioo 8911
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-rp 8735  df-ioo 8915
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator