ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erinxp GIF version

Theorem erinxp 6203
Description: A restricted equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 10-Jul-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
erinxp.r (𝜑𝑅 Er 𝐴)
erinxp.a (𝜑𝐵𝐴)
Assertion
Ref Expression
erinxp (𝜑 → (𝑅 ∩ (𝐵 × 𝐵)) Er 𝐵)

Proof of Theorem erinxp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss2 3187 . . . 4 (𝑅 ∩ (𝐵 × 𝐵)) ⊆ (𝐵 × 𝐵)
2 relxp 4465 . . . 4 Rel (𝐵 × 𝐵)
3 relss 4445 . . . 4 ((𝑅 ∩ (𝐵 × 𝐵)) ⊆ (𝐵 × 𝐵) → (Rel (𝐵 × 𝐵) → Rel (𝑅 ∩ (𝐵 × 𝐵))))
41, 2, 3mp2 16 . . 3 Rel (𝑅 ∩ (𝐵 × 𝐵))
54a1i 9 . 2 (𝜑 → Rel (𝑅 ∩ (𝐵 × 𝐵)))
6 simpr 108 . . . . 5 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦)
7 brinxp2 4425 . . . . 5 (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦 ↔ (𝑥𝐵𝑦𝐵𝑥𝑅𝑦))
86, 7sylib 120 . . . 4 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → (𝑥𝐵𝑦𝐵𝑥𝑅𝑦))
98simp2d 951 . . 3 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑦𝐵)
108simp1d 950 . . 3 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑥𝐵)
11 erinxp.r . . . . 5 (𝜑𝑅 Er 𝐴)
1211adantr 270 . . . 4 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑅 Er 𝐴)
138simp3d 952 . . . 4 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑥𝑅𝑦)
1412, 13ersym 6141 . . 3 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑦𝑅𝑥)
15 brinxp2 4425 . . 3 (𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑥 ↔ (𝑦𝐵𝑥𝐵𝑦𝑅𝑥))
169, 10, 14, 15syl3anbrc 1122 . 2 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑥)
1710adantrr 462 . . 3 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑥𝐵)
18 simprr 498 . . . . 5 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)
19 brinxp2 4425 . . . . 5 (𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧 ↔ (𝑦𝐵𝑧𝐵𝑦𝑅𝑧))
2018, 19sylib 120 . . . 4 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → (𝑦𝐵𝑧𝐵𝑦𝑅𝑧))
2120simp2d 951 . . 3 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑧𝐵)
2211adantr 270 . . . 4 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑅 Er 𝐴)
2313adantrr 462 . . . 4 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑥𝑅𝑦)
2420simp3d 952 . . . 4 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑦𝑅𝑧)
2522, 23, 24ertrd 6145 . . 3 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑥𝑅𝑧)
26 brinxp2 4425 . . 3 (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑧 ↔ (𝑥𝐵𝑧𝐵𝑥𝑅𝑧))
2717, 21, 25, 26syl3anbrc 1122 . 2 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑧)
2811adantr 270 . . . . . 6 ((𝜑𝑥𝐵) → 𝑅 Er 𝐴)
29 erinxp.a . . . . . . 7 (𝜑𝐵𝐴)
3029sselda 2999 . . . . . 6 ((𝜑𝑥𝐵) → 𝑥𝐴)
3128, 30erref 6149 . . . . 5 ((𝜑𝑥𝐵) → 𝑥𝑅𝑥)
3231ex 113 . . . 4 (𝜑 → (𝑥𝐵𝑥𝑅𝑥))
3332pm4.71rd 386 . . 3 (𝜑 → (𝑥𝐵 ↔ (𝑥𝑅𝑥𝑥𝐵)))
34 brin 3832 . . . 4 (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑥 ↔ (𝑥𝑅𝑥𝑥(𝐵 × 𝐵)𝑥))
35 brxp 4393 . . . . . 6 (𝑥(𝐵 × 𝐵)𝑥 ↔ (𝑥𝐵𝑥𝐵))
36 anidm 388 . . . . . 6 ((𝑥𝐵𝑥𝐵) ↔ 𝑥𝐵)
3735, 36bitri 182 . . . . 5 (𝑥(𝐵 × 𝐵)𝑥𝑥𝐵)
3837anbi2i 444 . . . 4 ((𝑥𝑅𝑥𝑥(𝐵 × 𝐵)𝑥) ↔ (𝑥𝑅𝑥𝑥𝐵))
3934, 38bitri 182 . . 3 (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑥 ↔ (𝑥𝑅𝑥𝑥𝐵))
4033, 39syl6bbr 196 . 2 (𝜑 → (𝑥𝐵𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑥))
415, 16, 27, 40iserd 6155 1 (𝜑 → (𝑅 ∩ (𝐵 × 𝐵)) Er 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 919  wcel 1433  cin 2972  wss 2973   class class class wbr 3785   × cxp 4361  Rel wrel 4368   Er wer 6126
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-er 6129
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator