| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpll2 | GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simpll2 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 942 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) | |
| 2 | 1 | adantr 270 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ∧ w3a 919 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 |
| This theorem depends on definitions: df-bi 115 df-3an 921 |
| This theorem is referenced by: fidceq 6354 fidifsnen 6355 en2eqpr 6380 cauappcvgprlemlol 6837 caucvgprlemlol 6860 caucvgprprlemlol 6888 elfzonelfzo 9239 qbtwnre 9265 expival 9478 subcn2 10150 divalglemex 10322 divalglemeuneg 10323 dvdslegcd 10356 lcmledvds 10452 |
| Copyright terms: Public domain | W3C validator |