ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qbtwnre GIF version

Theorem qbtwnre 9265
Description: The rational numbers are dense in : any two real numbers have a rational between them. Exercise 6 of [Apostol] p. 28. (Contributed by NM, 18-Nov-2004.)
Assertion
Ref Expression
qbtwnre ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem qbtwnre
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 939 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
2 simp1 938 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ)
31, 2resubcld 7485 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐵𝐴) ∈ ℝ)
4 simp3 940 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
52, 1posdifd 7632 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
64, 5mpbid 145 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 0 < (𝐵𝐴))
7 nnrecl 8286 . . 3 (((𝐵𝐴) ∈ ℝ ∧ 0 < (𝐵𝐴)) → ∃𝑛 ∈ ℕ (1 / 𝑛) < (𝐵𝐴))
83, 6, 7syl2anc 403 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ∃𝑛 ∈ ℕ (1 / 𝑛) < (𝐵𝐴))
92adantr 270 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) → 𝐴 ∈ ℝ)
10 2re 8109 . . . . . . 7 2 ∈ ℝ
1110a1i 9 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) → 2 ∈ ℝ)
12 simprl 497 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) → 𝑛 ∈ ℕ)
1312nnred 8052 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) → 𝑛 ∈ ℝ)
1411, 13remulcld 7149 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) → (2 · 𝑛) ∈ ℝ)
159, 14remulcld 7149 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) → (𝐴 · (2 · 𝑛)) ∈ ℝ)
16 rebtwn2z 9263 . . . 4 ((𝐴 · (2 · 𝑛)) ∈ ℝ → ∃𝑚 ∈ ℤ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))
1715, 16syl 14 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) → ∃𝑚 ∈ ℤ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))
18 simprl 497 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → 𝑚 ∈ ℤ)
19 2z 8379 . . . . . . 7 2 ∈ ℤ
2019a1i 9 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → 2 ∈ ℤ)
2118, 20zaddcld 8473 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → (𝑚 + 2) ∈ ℤ)
22 2nn 8193 . . . . . . 7 2 ∈ ℕ
2322a1i 9 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → 2 ∈ ℕ)
2412adantr 270 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → 𝑛 ∈ ℕ)
2523, 24nnmulcld 8087 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → (2 · 𝑛) ∈ ℕ)
26 znq 8709 . . . . 5 (((𝑚 + 2) ∈ ℤ ∧ (2 · 𝑛) ∈ ℕ) → ((𝑚 + 2) / (2 · 𝑛)) ∈ ℚ)
2721, 25, 26syl2anc 403 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → ((𝑚 + 2) / (2 · 𝑛)) ∈ ℚ)
28 simprrr 506 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → (𝐴 · (2 · 𝑛)) < (𝑚 + 2))
299adantr 270 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → 𝐴 ∈ ℝ)
3021zred 8469 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → (𝑚 + 2) ∈ ℝ)
3125nnrpd 8772 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → (2 · 𝑛) ∈ ℝ+)
3229, 30, 31ltmuldivd 8821 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → ((𝐴 · (2 · 𝑛)) < (𝑚 + 2) ↔ 𝐴 < ((𝑚 + 2) / (2 · 𝑛))))
3328, 32mpbid 145 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → 𝐴 < ((𝑚 + 2) / (2 · 𝑛)))
34 simpll2 978 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → 𝐵 ∈ ℝ)
35 simprrl 505 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → 𝑚 < (𝐴 · (2 · 𝑛)))
36 simplrr 502 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → (1 / 𝑛) < (𝐵𝐴))
3718, 24, 29, 34, 35, 36qbtwnrelemcalc 9264 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → ((𝑚 + 2) / (2 · 𝑛)) < 𝐵)
38 breq2 3789 . . . . . 6 (𝑥 = ((𝑚 + 2) / (2 · 𝑛)) → (𝐴 < 𝑥𝐴 < ((𝑚 + 2) / (2 · 𝑛))))
39 breq1 3788 . . . . . 6 (𝑥 = ((𝑚 + 2) / (2 · 𝑛)) → (𝑥 < 𝐵 ↔ ((𝑚 + 2) / (2 · 𝑛)) < 𝐵))
4038, 39anbi12d 456 . . . . 5 (𝑥 = ((𝑚 + 2) / (2 · 𝑛)) → ((𝐴 < 𝑥𝑥 < 𝐵) ↔ (𝐴 < ((𝑚 + 2) / (2 · 𝑛)) ∧ ((𝑚 + 2) / (2 · 𝑛)) < 𝐵)))
4140rspcev 2701 . . . 4 ((((𝑚 + 2) / (2 · 𝑛)) ∈ ℚ ∧ (𝐴 < ((𝑚 + 2) / (2 · 𝑛)) ∧ ((𝑚 + 2) / (2 · 𝑛)) < 𝐵)) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
4227, 33, 37, 41syl12anc 1167 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
4317, 42rexlimddv 2481 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
448, 43rexlimddv 2481 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 919   = wceq 1284  wcel 1433  wrex 2349   class class class wbr 3785  (class class class)co 5532  cr 6980  0cc0 6981  1c1 6982   + caddc 6984   · cmul 6986   < clt 7153  cmin 7279   / cdiv 7760  cn 8039  2c2 8089  cz 8351  cq 8704
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-rp 8735
This theorem is referenced by:  qbtwnxr  9266  qdenre  10088
  Copyright terms: Public domain W3C validator