ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemlol GIF version

Theorem caucvgprprlemlol 6888
Description: Lemma for caucvgprpr 6902. The lower cut of the putative limit is lower. (Contributed by Jim Kingdon, 21-Dec-2020.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprpr.bnd (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
caucvgprpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
Assertion
Ref Expression
caucvgprprlemlol ((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) → 𝑠 ∈ (1st𝐿))
Distinct variable groups:   𝐴,𝑚   𝑚,𝐹   𝐹,𝑙   𝑢,𝐹,𝑟   𝑝,𝑙,𝑠   𝑞,𝑙,𝑠,𝑟   𝑡,𝑙,𝑝   𝑢,𝑞,𝑠,𝑟   𝑢,𝑝,𝑡,𝑟   𝜑,𝑟   𝑟,𝑞,𝑡
Allowed substitution hints:   𝜑(𝑢,𝑡,𝑘,𝑚,𝑛,𝑠,𝑞,𝑝,𝑙)   𝐴(𝑢,𝑡,𝑘,𝑛,𝑠,𝑟,𝑞,𝑝,𝑙)   𝐹(𝑡,𝑘,𝑛,𝑠,𝑞,𝑝)   𝐿(𝑢,𝑡,𝑘,𝑚,𝑛,𝑠,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem caucvgprprlemlol
Dummy variables 𝑏 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 6555 . . . . 5 <Q ⊆ (Q × Q)
21brel 4410 . . . 4 (𝑠 <Q 𝑡 → (𝑠Q𝑡Q))
32simpld 110 . . 3 (𝑠 <Q 𝑡𝑠Q)
433ad2ant2 960 . 2 ((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) → 𝑠Q)
5 caucvgprpr.lim . . . . . . 7 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
65caucvgprprlemell 6875 . . . . . 6 (𝑡 ∈ (1st𝐿) ↔ (𝑡Q ∧ ∃𝑏N ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
76simprbi 269 . . . . 5 (𝑡 ∈ (1st𝐿) → ∃𝑏N ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))
873ad2ant3 961 . . . 4 ((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) → ∃𝑏N ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))
9 simpll2 978 . . . . . . . . 9 ((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → 𝑠 <Q 𝑡)
10 ltanqg 6590 . . . . . . . . . . 11 ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ (𝑧 +Q 𝑥) <Q (𝑧 +Q 𝑦)))
1110adantl 271 . . . . . . . . . 10 (((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) ∧ (𝑥Q𝑦Q𝑧Q)) → (𝑥 <Q 𝑦 ↔ (𝑧 +Q 𝑥) <Q (𝑧 +Q 𝑦)))
124ad2antrr 471 . . . . . . . . . 10 ((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → 𝑠Q)
132simprd 112 . . . . . . . . . . . 12 (𝑠 <Q 𝑡𝑡Q)
14133ad2ant2 960 . . . . . . . . . . 11 ((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) → 𝑡Q)
1514ad2antrr 471 . . . . . . . . . 10 ((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → 𝑡Q)
16 simplr 496 . . . . . . . . . . 11 ((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → 𝑏N)
17 nnnq 6612 . . . . . . . . . . 11 (𝑏N → [⟨𝑏, 1𝑜⟩] ~QQ)
18 recclnq 6582 . . . . . . . . . . 11 ([⟨𝑏, 1𝑜⟩] ~QQ → (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) ∈ Q)
1916, 17, 183syl 17 . . . . . . . . . 10 ((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) ∈ Q)
20 addcomnqg 6571 . . . . . . . . . . 11 ((𝑥Q𝑦Q) → (𝑥 +Q 𝑦) = (𝑦 +Q 𝑥))
2120adantl 271 . . . . . . . . . 10 (((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) ∧ (𝑥Q𝑦Q)) → (𝑥 +Q 𝑦) = (𝑦 +Q 𝑥))
2211, 12, 15, 19, 21caovord2d 5690 . . . . . . . . 9 ((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → (𝑠 <Q 𝑡 ↔ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))))
239, 22mpbid 145 . . . . . . . 8 ((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )))
24 ltnqpri 6784 . . . . . . . 8 ((𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩)
2523, 24syl 14 . . . . . . 7 ((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩)
26 ltsopr 6786 . . . . . . . 8 <P Or P
27 ltrelpr 6695 . . . . . . . 8 <P ⊆ (P × P)
2826, 27sotri 4740 . . . . . . 7 ((⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))
2925, 28sylancom 411 . . . . . 6 ((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))
3029ex 113 . . . . 5 (((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) → (⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏) → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
3130reximdva 2463 . . . 4 ((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) → (∃𝑏N ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏) → ∃𝑏N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
328, 31mpd 13 . . 3 ((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) → ∃𝑏N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))
33 opeq1 3570 . . . . . . . . . . 11 (𝑏 = 𝑟 → ⟨𝑏, 1𝑜⟩ = ⟨𝑟, 1𝑜⟩)
3433eceq1d 6165 . . . . . . . . . 10 (𝑏 = 𝑟 → [⟨𝑏, 1𝑜⟩] ~Q = [⟨𝑟, 1𝑜⟩] ~Q )
3534fveq2d 5202 . . . . . . . . 9 (𝑏 = 𝑟 → (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) = (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))
3635oveq2d 5548 . . . . . . . 8 (𝑏 = 𝑟 → (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) = (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )))
3736breq2d 3797 . . . . . . 7 (𝑏 = 𝑟 → (𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) ↔ 𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))))
3837abbidv 2196 . . . . . 6 (𝑏 = 𝑟 → {𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))} = {𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))})
3936breq1d 3795 . . . . . . 7 (𝑏 = 𝑟 → ((𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞 ↔ (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞))
4039abbidv 2196 . . . . . 6 (𝑏 = 𝑟 → {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞} = {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞})
4138, 40opeq12d 3578 . . . . 5 (𝑏 = 𝑟 → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩)
42 fveq2 5198 . . . . 5 (𝑏 = 𝑟 → (𝐹𝑏) = (𝐹𝑟))
4341, 42breq12d 3798 . . . 4 (𝑏 = 𝑟 → (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏) ↔ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
4443cbvrexv 2578 . . 3 (∃𝑏N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏) ↔ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟))
4532, 44sylib 120 . 2 ((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) → ∃𝑟N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟))
465caucvgprprlemell 6875 . 2 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
474, 45, 46sylanbrc 408 1 ((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) → 𝑠 ∈ (1st𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 919   = wceq 1284  wcel 1433  {cab 2067  wral 2348  wrex 2349  {crab 2352  cop 3401   class class class wbr 3785  wf 4918  cfv 4922  (class class class)co 5532  1st c1st 5785  1𝑜c1o 6017  [cec 6127  Ncnpi 6462   <N clti 6465   ~Q ceq 6469  Qcnq 6470   +Q cplq 6472  *Qcrq 6474   <Q cltq 6475  Pcnp 6481   +P cpp 6483  <P cltp 6485
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-inp 6656  df-iltp 6660
This theorem is referenced by:  caucvgprprlemrnd  6891
  Copyright terms: Public domain W3C validator