ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  squeeze0 GIF version

Theorem squeeze0 7982
Description: If a nonnegative number is less than any positive number, it is zero. (Contributed by NM, 11-Feb-2006.)
Assertion
Ref Expression
squeeze0 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → 𝐴 = 0)
Distinct variable group:   𝑥,𝐴

Proof of Theorem squeeze0
StepHypRef Expression
1 ltnr 7188 . . . . 5 (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
213ad2ant1 959 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → ¬ 𝐴 < 𝐴)
3 breq2 3789 . . . . . . 7 (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴))
4 breq2 3789 . . . . . . 7 (𝑥 = 𝐴 → (𝐴 < 𝑥𝐴 < 𝐴))
53, 4imbi12d 232 . . . . . 6 (𝑥 = 𝐴 → ((0 < 𝑥𝐴 < 𝑥) ↔ (0 < 𝐴𝐴 < 𝐴)))
65rspcva 2699 . . . . 5 ((𝐴 ∈ ℝ ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → (0 < 𝐴𝐴 < 𝐴))
763adant2 957 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → (0 < 𝐴𝐴 < 𝐴))
82, 7mtod 621 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → ¬ 0 < 𝐴)
9 simp1 938 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → 𝐴 ∈ ℝ)
10 0red 7120 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → 0 ∈ ℝ)
119, 10lenltd 7227 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → (𝐴 ≤ 0 ↔ ¬ 0 < 𝐴))
128, 11mpbird 165 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → 𝐴 ≤ 0)
13 simp2 939 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → 0 ≤ 𝐴)
149, 10letri3d 7226 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → (𝐴 = 0 ↔ (𝐴 ≤ 0 ∧ 0 ≤ 𝐴)))
1512, 13, 14mpbir2and 885 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → 𝐴 = 0)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  w3a 919   = wceq 1284  wcel 1433  wral 2348   class class class wbr 3785  cr 6980  0cc0 6981   < clt 7153  cle 7154
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1re 7070  ax-addrcl 7073  ax-rnegex 7085  ax-pre-ltirr 7088  ax-pre-apti 7091
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-xp 4369  df-cnv 4371  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator