![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssxp2 | GIF version |
Description: Cross product subset cancellation. (Contributed by Jim Kingdon, 14-Dec-2018.) |
Ref | Expression |
---|---|
ssxp2 | ⊢ (∃𝑥 𝑥 ∈ 𝐶 → ((𝐶 × 𝐴) ⊆ (𝐶 × 𝐵) ↔ 𝐴 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnxpm 4772 | . . . . . 6 ⊢ (∃𝑥 𝑥 ∈ 𝐶 → ran (𝐶 × 𝐴) = 𝐴) | |
2 | 1 | adantr 270 | . . . . 5 ⊢ ((∃𝑥 𝑥 ∈ 𝐶 ∧ (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) → ran (𝐶 × 𝐴) = 𝐴) |
3 | rnss 4582 | . . . . . 6 ⊢ ((𝐶 × 𝐴) ⊆ (𝐶 × 𝐵) → ran (𝐶 × 𝐴) ⊆ ran (𝐶 × 𝐵)) | |
4 | 3 | adantl 271 | . . . . 5 ⊢ ((∃𝑥 𝑥 ∈ 𝐶 ∧ (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) → ran (𝐶 × 𝐴) ⊆ ran (𝐶 × 𝐵)) |
5 | 2, 4 | eqsstr3d 3034 | . . . 4 ⊢ ((∃𝑥 𝑥 ∈ 𝐶 ∧ (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) → 𝐴 ⊆ ran (𝐶 × 𝐵)) |
6 | rnxpss 4774 | . . . 4 ⊢ ran (𝐶 × 𝐵) ⊆ 𝐵 | |
7 | 5, 6 | syl6ss 3011 | . . 3 ⊢ ((∃𝑥 𝑥 ∈ 𝐶 ∧ (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) → 𝐴 ⊆ 𝐵) |
8 | 7 | ex 113 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐶 → ((𝐶 × 𝐴) ⊆ (𝐶 × 𝐵) → 𝐴 ⊆ 𝐵)) |
9 | xpss2 4467 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) | |
10 | 8, 9 | impbid1 140 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐶 → ((𝐶 × 𝐴) ⊆ (𝐶 × 𝐵) ↔ 𝐴 ⊆ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1284 ∃wex 1421 ∈ wcel 1433 ⊆ wss 2973 × cxp 4361 ran crn 4364 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-xp 4369 df-rel 4370 df-cnv 4371 df-dm 4373 df-rn 4374 |
This theorem is referenced by: xpcanm 4780 |
Copyright terms: Public domain | W3C validator |