ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucexb GIF version

Theorem sucexb 4241
Description: A successor exists iff its class argument exists. (Contributed by NM, 22-Jun-1998.)
Assertion
Ref Expression
sucexb (𝐴 ∈ V ↔ suc 𝐴 ∈ V)

Proof of Theorem sucexb
StepHypRef Expression
1 unexb 4195 . 2 ((𝐴 ∈ V ∧ {𝐴} ∈ V) ↔ (𝐴 ∪ {𝐴}) ∈ V)
2 snexg 3956 . . 3 (𝐴 ∈ V → {𝐴} ∈ V)
32pm4.71i 383 . 2 (𝐴 ∈ V ↔ (𝐴 ∈ V ∧ {𝐴} ∈ V))
4 df-suc 4126 . . 3 suc 𝐴 = (𝐴 ∪ {𝐴})
54eleq1i 2144 . 2 (suc 𝐴 ∈ V ↔ (𝐴 ∪ {𝐴}) ∈ V)
61, 3, 53bitr4i 210 1 (𝐴 ∈ V ↔ suc 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103  wcel 1433  Vcvv 2601  cun 2971  {csn 3398  suc csuc 4120
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-uni 3602  df-suc 4126
This theorem is referenced by:  sucexg  4242  sucelon  4247  onsucelsucr  4252  sucunielr  4254  peano2b  4355
  Copyright terms: Public domain W3C validator