| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sucprc | GIF version | ||
| Description: A proper class is its own successor. (Contributed by NM, 3-Apr-1995.) |
| Ref | Expression |
|---|---|
| sucprc | ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-suc 4126 | . . 3 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 2 | snprc 3457 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 3 | uneq2 3120 | . . . 4 ⊢ ({𝐴} = ∅ → (𝐴 ∪ {𝐴}) = (𝐴 ∪ ∅)) | |
| 4 | 2, 3 | sylbi 119 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐴 ∪ {𝐴}) = (𝐴 ∪ ∅)) |
| 5 | 1, 4 | syl5eq 2125 | . 2 ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = (𝐴 ∪ ∅)) |
| 6 | un0 3278 | . 2 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
| 7 | 5, 6 | syl6eq 2129 | 1 ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1284 ∈ wcel 1433 Vcvv 2601 ∪ cun 2971 ∅c0 3251 {csn 3398 suc csuc 4120 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-dif 2975 df-un 2977 df-nul 3252 df-sn 3404 df-suc 4126 |
| This theorem is referenced by: sucprcreg 4292 sucon 4296 |
| Copyright terms: Public domain | W3C validator |