ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unisuc GIF version

Theorem unisuc 4168
Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
unisuc.1 𝐴 ∈ V
Assertion
Ref Expression
unisuc (Tr 𝐴 suc 𝐴 = 𝐴)

Proof of Theorem unisuc
StepHypRef Expression
1 ssequn1 3142 . 2 ( 𝐴𝐴 ↔ ( 𝐴𝐴) = 𝐴)
2 df-tr 3876 . 2 (Tr 𝐴 𝐴𝐴)
3 df-suc 4126 . . . . 5 suc 𝐴 = (𝐴 ∪ {𝐴})
43unieqi 3611 . . . 4 suc 𝐴 = (𝐴 ∪ {𝐴})
5 uniun 3620 . . . 4 (𝐴 ∪ {𝐴}) = ( 𝐴 {𝐴})
6 unisuc.1 . . . . . 6 𝐴 ∈ V
76unisn 3617 . . . . 5 {𝐴} = 𝐴
87uneq2i 3123 . . . 4 ( 𝐴 {𝐴}) = ( 𝐴𝐴)
94, 5, 83eqtri 2105 . . 3 suc 𝐴 = ( 𝐴𝐴)
109eqeq1i 2088 . 2 ( suc 𝐴 = 𝐴 ↔ ( 𝐴𝐴) = 𝐴)
111, 2, 103bitr4i 210 1 (Tr 𝐴 suc 𝐴 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wb 103   = wceq 1284  wcel 1433  Vcvv 2601  cun 2971  wss 2973  {csn 3398   cuni 3601  Tr wtr 3875  suc csuc 4120
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-sn 3404  df-pr 3405  df-uni 3602  df-tr 3876  df-suc 4126
This theorem is referenced by:  onunisuci  4187  ordsucunielexmid  4274  tfrexlem  5971
  Copyright terms: Public domain W3C validator