ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl5eqbrr GIF version

Theorem syl5eqbrr 3819
Description: B chained equality inference for a binary relation. (Contributed by NM, 17-Sep-2004.)
Hypotheses
Ref Expression
syl5eqbrr.1 𝐵 = 𝐴
syl5eqbrr.2 (𝜑𝐵𝑅𝐶)
Assertion
Ref Expression
syl5eqbrr (𝜑𝐴𝑅𝐶)

Proof of Theorem syl5eqbrr
StepHypRef Expression
1 syl5eqbrr.2 . 2 (𝜑𝐵𝑅𝐶)
2 syl5eqbrr.1 . 2 𝐵 = 𝐴
3 eqid 2081 . 2 𝐶 = 𝐶
41, 2, 33brtr3g 3816 1 (𝜑𝐴𝑅𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1284   class class class wbr 3785
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786
This theorem is referenced by:  enpr1g  6301  recexprlem1ssl  6823  addgt0  7552  addgegt0  7553  addgtge0  7554  addge0  7555  expge1  9513  ncoprmgcdne1b  10471
  Copyright terms: Public domain W3C validator