| Step | Hyp | Ref
| Expression |
| 1 | | 1prl 6745 |
. . . 4
⊢
(1st ‘1P) = {𝑤 ∣ 𝑤 <Q
1Q} |
| 2 | 1 | abeq2i 2189 |
. . 3
⊢ (𝑤 ∈ (1st
‘1P) ↔ 𝑤 <Q
1Q) |
| 3 | | rec1nq 6585 |
. . . . . . 7
⊢
(*Q‘1Q) =
1Q |
| 4 | | ltrnqi 6611 |
. . . . . . 7
⊢ (𝑤 <Q
1Q →
(*Q‘1Q)
<Q (*Q‘𝑤)) |
| 5 | 3, 4 | syl5eqbrr 3819 |
. . . . . 6
⊢ (𝑤 <Q
1Q → 1Q
<Q (*Q‘𝑤)) |
| 6 | | prop 6665 |
. . . . . . 7
⊢ (𝐴 ∈ P →
〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈
P) |
| 7 | | prmuloc2 6757 |
. . . . . . 7
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧
1Q <Q
(*Q‘𝑤)) → ∃𝑣 ∈ (1st ‘𝐴)(𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴)) |
| 8 | 6, 7 | sylan 277 |
. . . . . 6
⊢ ((𝐴 ∈ P ∧
1Q <Q
(*Q‘𝑤)) → ∃𝑣 ∈ (1st ‘𝐴)(𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴)) |
| 9 | 5, 8 | sylan2 280 |
. . . . 5
⊢ ((𝐴 ∈ P ∧
𝑤
<Q 1Q) → ∃𝑣 ∈ (1st
‘𝐴)(𝑣
·Q (*Q‘𝑤)) ∈ (2nd
‘𝐴)) |
| 10 | | prnmaxl 6678 |
. . . . . . . 8
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑣 ∈ (1st
‘𝐴)) →
∃𝑧 ∈
(1st ‘𝐴)𝑣 <Q 𝑧) |
| 11 | 6, 10 | sylan 277 |
. . . . . . 7
⊢ ((𝐴 ∈ P ∧
𝑣 ∈ (1st
‘𝐴)) →
∃𝑧 ∈
(1st ‘𝐴)𝑣 <Q 𝑧) |
| 12 | 11 | ad2ant2r 492 |
. . . . . 6
⊢ (((𝐴 ∈ P ∧
𝑤
<Q 1Q) ∧ (𝑣 ∈ (1st
‘𝐴) ∧ (𝑣
·Q (*Q‘𝑤)) ∈ (2nd
‘𝐴))) →
∃𝑧 ∈
(1st ‘𝐴)𝑣 <Q 𝑧) |
| 13 | | elprnql 6671 |
. . . . . . . . . . . . . 14
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑣 ∈ (1st
‘𝐴)) → 𝑣 ∈
Q) |
| 14 | 6, 13 | sylan 277 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ P ∧
𝑣 ∈ (1st
‘𝐴)) → 𝑣 ∈
Q) |
| 15 | 14 | ad2ant2r 492 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ P ∧
𝑤
<Q 1Q) ∧ (𝑣 ∈ (1st
‘𝐴) ∧ (𝑣
·Q (*Q‘𝑤)) ∈ (2nd
‘𝐴))) → 𝑣 ∈
Q) |
| 16 | 15 | 3adant3 958 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ P ∧
𝑤
<Q 1Q) ∧ (𝑣 ∈ (1st
‘𝐴) ∧ (𝑣
·Q (*Q‘𝑤)) ∈ (2nd
‘𝐴)) ∧ 𝑣 <Q
𝑧) → 𝑣 ∈
Q) |
| 17 | | simp1r 963 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ P ∧
𝑤
<Q 1Q) ∧ (𝑣 ∈ (1st
‘𝐴) ∧ (𝑣
·Q (*Q‘𝑤)) ∈ (2nd
‘𝐴)) ∧ 𝑣 <Q
𝑧) → 𝑤 <Q
1Q) |
| 18 | | ltrelnq 6555 |
. . . . . . . . . . . . . 14
⊢
<Q ⊆ (Q ×
Q) |
| 19 | 18 | brel 4410 |
. . . . . . . . . . . . 13
⊢ (𝑤 <Q
1Q → (𝑤 ∈ Q ∧
1Q ∈ Q)) |
| 20 | 19 | simpld 110 |
. . . . . . . . . . . 12
⊢ (𝑤 <Q
1Q → 𝑤 ∈ Q) |
| 21 | 17, 20 | syl 14 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ P ∧
𝑤
<Q 1Q) ∧ (𝑣 ∈ (1st
‘𝐴) ∧ (𝑣
·Q (*Q‘𝑤)) ∈ (2nd
‘𝐴)) ∧ 𝑣 <Q
𝑧) → 𝑤 ∈
Q) |
| 22 | | simp3 940 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ P ∧
𝑤
<Q 1Q) ∧ (𝑣 ∈ (1st
‘𝐴) ∧ (𝑣
·Q (*Q‘𝑤)) ∈ (2nd
‘𝐴)) ∧ 𝑣 <Q
𝑧) → 𝑣 <Q
𝑧) |
| 23 | | simp2r 965 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ P ∧
𝑤
<Q 1Q) ∧ (𝑣 ∈ (1st
‘𝐴) ∧ (𝑣
·Q (*Q‘𝑤)) ∈ (2nd
‘𝐴)) ∧ 𝑣 <Q
𝑧) → (𝑣
·Q (*Q‘𝑤)) ∈ (2nd
‘𝐴)) |
| 24 | | simpr 108 |
. . . . . . . . . . . 12
⊢ (((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) → (𝑣 <Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) |
| 25 | | ltrnqi 6611 |
. . . . . . . . . . . . . 14
⊢ (𝑣 <Q
𝑧 →
(*Q‘𝑧) <Q
(*Q‘𝑣)) |
| 26 | | ltmnqg 6591 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q
∧ ℎ ∈
Q) → (𝑓
<Q 𝑔 ↔ (ℎ ·Q 𝑓) <Q
(ℎ
·Q 𝑔))) |
| 27 | 26 | adantl 271 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧
ℎ ∈ Q))
→ (𝑓
<Q 𝑔 ↔ (ℎ ·Q 𝑓) <Q
(ℎ
·Q 𝑔))) |
| 28 | | simprl 497 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) → 𝑣 <Q 𝑧) |
| 29 | 18 | brel 4410 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 <Q
𝑧 → (𝑣 ∈ Q ∧
𝑧 ∈
Q)) |
| 30 | 29 | simprd 112 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 <Q
𝑧 → 𝑧 ∈ Q) |
| 31 | | recclnq 6582 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ Q →
(*Q‘𝑧) ∈ Q) |
| 32 | 28, 30, 31 | 3syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) →
(*Q‘𝑧) ∈ Q) |
| 33 | | recclnq 6582 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 ∈ Q →
(*Q‘𝑣) ∈ Q) |
| 34 | 33 | ad2antrr 471 |
. . . . . . . . . . . . . . 15
⊢ (((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) →
(*Q‘𝑣) ∈ Q) |
| 35 | | simplr 496 |
. . . . . . . . . . . . . . 15
⊢ (((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) → 𝑤 ∈ Q) |
| 36 | | mulcomnqg 6573 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q)
→ (𝑓
·Q 𝑔) = (𝑔 ·Q 𝑓)) |
| 37 | 36 | adantl 271 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q)) →
(𝑓
·Q 𝑔) = (𝑔 ·Q 𝑓)) |
| 38 | 27, 32, 34, 35, 37 | caovord2d 5690 |
. . . . . . . . . . . . . 14
⊢ (((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) →
((*Q‘𝑧) <Q
(*Q‘𝑣) ↔
((*Q‘𝑧) ·Q 𝑤) <Q
((*Q‘𝑣) ·Q 𝑤))) |
| 39 | 25, 38 | syl5ib 152 |
. . . . . . . . . . . . 13
⊢ (((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) → (𝑣 <Q 𝑧 →
((*Q‘𝑧) ·Q 𝑤) <Q
((*Q‘𝑣) ·Q 𝑤))) |
| 40 | | 1nq 6556 |
. . . . . . . . . . . . . . . . . 18
⊢
1Q ∈ Q |
| 41 | | mulidnq 6579 |
. . . . . . . . . . . . . . . . . 18
⊢
(1Q ∈ Q →
(1Q ·Q
1Q) = 1Q) |
| 42 | 40, 41 | ax-mp 7 |
. . . . . . . . . . . . . . . . 17
⊢
(1Q ·Q
1Q) = 1Q |
| 43 | | mulcomnqg 6573 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑣 ∈ Q ∧
(*Q‘𝑣) ∈ Q) → (𝑣
·Q (*Q‘𝑣)) =
((*Q‘𝑣) ·Q 𝑣)) |
| 44 | 33, 43 | mpdan 412 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑣 ∈ Q →
(𝑣
·Q (*Q‘𝑣)) =
((*Q‘𝑣) ·Q 𝑣)) |
| 45 | | recidnq 6583 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑣 ∈ Q →
(𝑣
·Q (*Q‘𝑣)) =
1Q) |
| 46 | 44, 45 | eqtr3d 2115 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑣 ∈ Q →
((*Q‘𝑣) ·Q 𝑣) =
1Q) |
| 47 | | recidnq 6583 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 ∈ Q →
(𝑤
·Q (*Q‘𝑤)) =
1Q) |
| 48 | 46, 47 | oveqan12d 5551 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑣 ∈ Q ∧
𝑤 ∈ Q)
→ (((*Q‘𝑣) ·Q 𝑣)
·Q (𝑤 ·Q
(*Q‘𝑤))) = (1Q
·Q
1Q)) |
| 49 | 48 | adantr 270 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) →
(((*Q‘𝑣) ·Q 𝑣)
·Q (𝑤 ·Q
(*Q‘𝑤))) = (1Q
·Q
1Q)) |
| 50 | | simpll 495 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) → 𝑣 ∈ Q) |
| 51 | | mulassnqg 6574 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q
∧ ℎ ∈
Q) → ((𝑓
·Q 𝑔) ·Q ℎ) = (𝑓 ·Q (𝑔
·Q ℎ))) |
| 52 | 51 | adantl 271 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧
ℎ ∈ Q))
→ ((𝑓
·Q 𝑔) ·Q ℎ) = (𝑓 ·Q (𝑔
·Q ℎ))) |
| 53 | | recclnq 6582 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 ∈ Q →
(*Q‘𝑤) ∈ Q) |
| 54 | 35, 53 | syl 14 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) →
(*Q‘𝑤) ∈ Q) |
| 55 | | mulclnq 6566 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q)
→ (𝑓
·Q 𝑔) ∈ Q) |
| 56 | 55 | adantl 271 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q)) →
(𝑓
·Q 𝑔) ∈ Q) |
| 57 | 34, 50, 35, 37, 52, 54, 56 | caov4d 5705 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) →
(((*Q‘𝑣) ·Q 𝑣)
·Q (𝑤 ·Q
(*Q‘𝑤))) =
(((*Q‘𝑣) ·Q 𝑤)
·Q (𝑣 ·Q
(*Q‘𝑤)))) |
| 58 | 49, 57 | eqtr3d 2115 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) →
(1Q ·Q
1Q) = (((*Q‘𝑣)
·Q 𝑤) ·Q (𝑣
·Q (*Q‘𝑤)))) |
| 59 | 42, 58 | syl5reqr 2128 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) →
(((*Q‘𝑣) ·Q 𝑤)
·Q (𝑣 ·Q
(*Q‘𝑤))) =
1Q) |
| 60 | | mulclnq 6566 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((*Q‘𝑣) ∈ Q ∧ 𝑤 ∈ Q) →
((*Q‘𝑣) ·Q 𝑤) ∈
Q) |
| 61 | 33, 60 | sylan 277 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑣 ∈ Q ∧
𝑤 ∈ Q)
→ ((*Q‘𝑣) ·Q 𝑤) ∈
Q) |
| 62 | | mulclnq 6566 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑣 ∈ Q ∧
(*Q‘𝑤) ∈ Q) → (𝑣
·Q (*Q‘𝑤)) ∈
Q) |
| 63 | 53, 62 | sylan2 280 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑣 ∈ Q ∧
𝑤 ∈ Q)
→ (𝑣
·Q (*Q‘𝑤)) ∈
Q) |
| 64 | | recmulnqg 6581 |
. . . . . . . . . . . . . . . . . 18
⊢
((((*Q‘𝑣) ·Q 𝑤) ∈ Q ∧
(𝑣
·Q (*Q‘𝑤)) ∈ Q)
→
((*Q‘((*Q‘𝑣)
·Q 𝑤)) = (𝑣 ·Q
(*Q‘𝑤)) ↔
(((*Q‘𝑣) ·Q 𝑤)
·Q (𝑣 ·Q
(*Q‘𝑤))) =
1Q)) |
| 65 | 61, 63, 64 | syl2anc 403 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑣 ∈ Q ∧
𝑤 ∈ Q)
→
((*Q‘((*Q‘𝑣)
·Q 𝑤)) = (𝑣 ·Q
(*Q‘𝑤)) ↔
(((*Q‘𝑣) ·Q 𝑤)
·Q (𝑣 ·Q
(*Q‘𝑤))) =
1Q)) |
| 66 | 65 | adantr 270 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) →
((*Q‘((*Q‘𝑣)
·Q 𝑤)) = (𝑣 ·Q
(*Q‘𝑤)) ↔
(((*Q‘𝑣) ·Q 𝑤)
·Q (𝑣 ·Q
(*Q‘𝑤))) =
1Q)) |
| 67 | 59, 66 | mpbird 165 |
. . . . . . . . . . . . . . 15
⊢ (((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) →
(*Q‘((*Q‘𝑣)
·Q 𝑤)) = (𝑣 ·Q
(*Q‘𝑤))) |
| 68 | 67 | eleq1d 2147 |
. . . . . . . . . . . . . 14
⊢ (((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) →
((*Q‘((*Q‘𝑣)
·Q 𝑤)) ∈ (2nd ‘𝐴) ↔ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) |
| 69 | 68 | biimprd 156 |
. . . . . . . . . . . . 13
⊢ (((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) → ((𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴) →
(*Q‘((*Q‘𝑣)
·Q 𝑤)) ∈ (2nd ‘𝐴))) |
| 70 | | breq2 3789 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 =
((*Q‘𝑣) ·Q 𝑤) →
(((*Q‘𝑧) ·Q 𝑤) <Q
𝑦 ↔
((*Q‘𝑧) ·Q 𝑤) <Q
((*Q‘𝑣) ·Q 𝑤))) |
| 71 | | fveq2 5198 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 =
((*Q‘𝑣) ·Q 𝑤) →
(*Q‘𝑦) =
(*Q‘((*Q‘𝑣)
·Q 𝑤))) |
| 72 | 71 | eleq1d 2147 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 =
((*Q‘𝑣) ·Q 𝑤) →
((*Q‘𝑦) ∈ (2nd ‘𝐴) ↔
(*Q‘((*Q‘𝑣)
·Q 𝑤)) ∈ (2nd ‘𝐴))) |
| 73 | 70, 72 | anbi12d 456 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 =
((*Q‘𝑣) ·Q 𝑤) →
((((*Q‘𝑧) ·Q 𝑤) <Q
𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) ↔
(((*Q‘𝑧) ·Q 𝑤) <Q
((*Q‘𝑣) ·Q 𝑤) ∧
(*Q‘((*Q‘𝑣)
·Q 𝑤)) ∈ (2nd ‘𝐴)))) |
| 74 | 73 | spcegv 2686 |
. . . . . . . . . . . . . . . 16
⊢
(((*Q‘𝑣) ·Q 𝑤) ∈ Q →
((((*Q‘𝑧) ·Q 𝑤) <Q
((*Q‘𝑣) ·Q 𝑤) ∧
(*Q‘((*Q‘𝑣)
·Q 𝑤)) ∈ (2nd ‘𝐴)) → ∃𝑦(((*Q‘𝑧)
·Q 𝑤) <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)))) |
| 75 | 61, 74 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ ((𝑣 ∈ Q ∧
𝑤 ∈ Q)
→ ((((*Q‘𝑧) ·Q 𝑤) <Q
((*Q‘𝑣) ·Q 𝑤) ∧
(*Q‘((*Q‘𝑣)
·Q 𝑤)) ∈ (2nd ‘𝐴)) → ∃𝑦(((*Q‘𝑧)
·Q 𝑤) <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)))) |
| 76 | | recexpr.1 |
. . . . . . . . . . . . . . . 16
⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))}〉 |
| 77 | 76 | recexprlemell 6812 |
. . . . . . . . . . . . . . 15
⊢
(((*Q‘𝑧) ·Q 𝑤) ∈ (1st
‘𝐵) ↔
∃𝑦(((*Q‘𝑧)
·Q 𝑤) <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))) |
| 78 | 75, 77 | syl6ibr 160 |
. . . . . . . . . . . . . 14
⊢ ((𝑣 ∈ Q ∧
𝑤 ∈ Q)
→ ((((*Q‘𝑧) ·Q 𝑤) <Q
((*Q‘𝑣) ·Q 𝑤) ∧
(*Q‘((*Q‘𝑣)
·Q 𝑤)) ∈ (2nd ‘𝐴)) →
((*Q‘𝑧) ·Q 𝑤) ∈ (1st
‘𝐵))) |
| 79 | 78 | adantr 270 |
. . . . . . . . . . . . 13
⊢ (((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) →
((((*Q‘𝑧) ·Q 𝑤) <Q
((*Q‘𝑣) ·Q 𝑤) ∧
(*Q‘((*Q‘𝑣)
·Q 𝑤)) ∈ (2nd ‘𝐴)) →
((*Q‘𝑧) ·Q 𝑤) ∈ (1st
‘𝐵))) |
| 80 | 39, 69, 79 | syl2and 289 |
. . . . . . . . . . . 12
⊢ (((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) → ((𝑣 <Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴)) →
((*Q‘𝑧) ·Q 𝑤) ∈ (1st
‘𝐵))) |
| 81 | 24, 80 | mpd 13 |
. . . . . . . . . . 11
⊢ (((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) →
((*Q‘𝑧) ·Q 𝑤) ∈ (1st
‘𝐵)) |
| 82 | 16, 21, 22, 23, 81 | syl22anc 1170 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ P ∧
𝑤
<Q 1Q) ∧ (𝑣 ∈ (1st
‘𝐴) ∧ (𝑣
·Q (*Q‘𝑤)) ∈ (2nd
‘𝐴)) ∧ 𝑣 <Q
𝑧) →
((*Q‘𝑧) ·Q 𝑤) ∈ (1st
‘𝐵)) |
| 83 | 30 | 3ad2ant3 961 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ P ∧
𝑤
<Q 1Q) ∧ (𝑣 ∈ (1st
‘𝐴) ∧ (𝑣
·Q (*Q‘𝑤)) ∈ (2nd
‘𝐴)) ∧ 𝑣 <Q
𝑧) → 𝑧 ∈
Q) |
| 84 | | mulidnq 6579 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ Q →
(𝑤
·Q 1Q) = 𝑤) |
| 85 | | mulcomnqg 6573 |
. . . . . . . . . . . . . . 15
⊢ ((𝑤 ∈ Q ∧
1Q ∈ Q) → (𝑤 ·Q
1Q) = (1Q
·Q 𝑤)) |
| 86 | 40, 85 | mpan2 415 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ Q →
(𝑤
·Q 1Q) =
(1Q ·Q 𝑤)) |
| 87 | 84, 86 | eqtr3d 2115 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ Q →
𝑤 =
(1Q ·Q 𝑤)) |
| 88 | 87 | adantl 271 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ Q ∧
𝑤 ∈ Q)
→ 𝑤 =
(1Q ·Q 𝑤)) |
| 89 | | recidnq 6583 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ Q →
(𝑧
·Q (*Q‘𝑧)) =
1Q) |
| 90 | 89 | oveq1d 5547 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ Q →
((𝑧
·Q (*Q‘𝑧))
·Q 𝑤) = (1Q
·Q 𝑤)) |
| 91 | 90 | adantr 270 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ Q ∧
𝑤 ∈ Q)
→ ((𝑧
·Q (*Q‘𝑧))
·Q 𝑤) = (1Q
·Q 𝑤)) |
| 92 | | mulassnqg 6574 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ Q ∧
(*Q‘𝑧) ∈ Q ∧ 𝑤 ∈ Q) →
((𝑧
·Q (*Q‘𝑧))
·Q 𝑤) = (𝑧 ·Q
((*Q‘𝑧) ·Q 𝑤))) |
| 93 | 31, 92 | syl3an2 1203 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ Q ∧
𝑧 ∈ Q
∧ 𝑤 ∈
Q) → ((𝑧
·Q (*Q‘𝑧))
·Q 𝑤) = (𝑧 ·Q
((*Q‘𝑧) ·Q 𝑤))) |
| 94 | 93 | 3anidm12 1226 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ Q ∧
𝑤 ∈ Q)
→ ((𝑧
·Q (*Q‘𝑧))
·Q 𝑤) = (𝑧 ·Q
((*Q‘𝑧) ·Q 𝑤))) |
| 95 | 88, 91, 94 | 3eqtr2d 2119 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ Q ∧
𝑤 ∈ Q)
→ 𝑤 = (𝑧
·Q ((*Q‘𝑧)
·Q 𝑤))) |
| 96 | 83, 21, 95 | syl2anc 403 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ P ∧
𝑤
<Q 1Q) ∧ (𝑣 ∈ (1st
‘𝐴) ∧ (𝑣
·Q (*Q‘𝑤)) ∈ (2nd
‘𝐴)) ∧ 𝑣 <Q
𝑧) → 𝑤 = (𝑧 ·Q
((*Q‘𝑧) ·Q 𝑤))) |
| 97 | | oveq2 5540 |
. . . . . . . . . . . 12
⊢ (𝑥 =
((*Q‘𝑧) ·Q 𝑤) → (𝑧 ·Q 𝑥) = (𝑧 ·Q
((*Q‘𝑧) ·Q 𝑤))) |
| 98 | 97 | eqeq2d 2092 |
. . . . . . . . . . 11
⊢ (𝑥 =
((*Q‘𝑧) ·Q 𝑤) → (𝑤 = (𝑧 ·Q 𝑥) ↔ 𝑤 = (𝑧 ·Q
((*Q‘𝑧) ·Q 𝑤)))) |
| 99 | 98 | rspcev 2701 |
. . . . . . . . . 10
⊢
((((*Q‘𝑧) ·Q 𝑤) ∈ (1st
‘𝐵) ∧ 𝑤 = (𝑧 ·Q
((*Q‘𝑧) ·Q 𝑤))) → ∃𝑥 ∈ (1st
‘𝐵)𝑤 = (𝑧 ·Q 𝑥)) |
| 100 | 82, 96, 99 | syl2anc 403 |
. . . . . . . . 9
⊢ (((𝐴 ∈ P ∧
𝑤
<Q 1Q) ∧ (𝑣 ∈ (1st
‘𝐴) ∧ (𝑣
·Q (*Q‘𝑤)) ∈ (2nd
‘𝐴)) ∧ 𝑣 <Q
𝑧) → ∃𝑥 ∈ (1st
‘𝐵)𝑤 = (𝑧 ·Q 𝑥)) |
| 101 | 100 | 3expia 1140 |
. . . . . . . 8
⊢ (((𝐴 ∈ P ∧
𝑤
<Q 1Q) ∧ (𝑣 ∈ (1st
‘𝐴) ∧ (𝑣
·Q (*Q‘𝑤)) ∈ (2nd
‘𝐴))) → (𝑣 <Q
𝑧 → ∃𝑥 ∈ (1st
‘𝐵)𝑤 = (𝑧 ·Q 𝑥))) |
| 102 | 101 | reximdv 2462 |
. . . . . . 7
⊢ (((𝐴 ∈ P ∧
𝑤
<Q 1Q) ∧ (𝑣 ∈ (1st
‘𝐴) ∧ (𝑣
·Q (*Q‘𝑤)) ∈ (2nd
‘𝐴))) →
(∃𝑧 ∈
(1st ‘𝐴)𝑣 <Q 𝑧 → ∃𝑧 ∈ (1st
‘𝐴)∃𝑥 ∈ (1st
‘𝐵)𝑤 = (𝑧 ·Q 𝑥))) |
| 103 | 76 | recexprlempr 6822 |
. . . . . . . . 9
⊢ (𝐴 ∈ P →
𝐵 ∈
P) |
| 104 | | df-imp 6659 |
. . . . . . . . . 10
⊢
·P = (𝑦 ∈ P, 𝑤 ∈ P ↦ 〈{𝑢 ∈ Q ∣
∃𝑓 ∈
Q ∃𝑔
∈ Q (𝑓
∈ (1st ‘𝑦) ∧ 𝑔 ∈ (1st ‘𝑤) ∧ 𝑢 = (𝑓 ·Q 𝑔))}, {𝑢 ∈ Q ∣ ∃𝑓 ∈ Q
∃𝑔 ∈
Q (𝑓 ∈
(2nd ‘𝑦)
∧ 𝑔 ∈
(2nd ‘𝑤)
∧ 𝑢 = (𝑓
·Q 𝑔))}〉) |
| 105 | 104, 55 | genpelvl 6702 |
. . . . . . . . 9
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ (𝑤 ∈
(1st ‘(𝐴
·P 𝐵)) ↔ ∃𝑧 ∈ (1st ‘𝐴)∃𝑥 ∈ (1st ‘𝐵)𝑤 = (𝑧 ·Q 𝑥))) |
| 106 | 103, 105 | mpdan 412 |
. . . . . . . 8
⊢ (𝐴 ∈ P →
(𝑤 ∈ (1st
‘(𝐴
·P 𝐵)) ↔ ∃𝑧 ∈ (1st ‘𝐴)∃𝑥 ∈ (1st ‘𝐵)𝑤 = (𝑧 ·Q 𝑥))) |
| 107 | 106 | ad2antrr 471 |
. . . . . . 7
⊢ (((𝐴 ∈ P ∧
𝑤
<Q 1Q) ∧ (𝑣 ∈ (1st
‘𝐴) ∧ (𝑣
·Q (*Q‘𝑤)) ∈ (2nd
‘𝐴))) → (𝑤 ∈ (1st
‘(𝐴
·P 𝐵)) ↔ ∃𝑧 ∈ (1st ‘𝐴)∃𝑥 ∈ (1st ‘𝐵)𝑤 = (𝑧 ·Q 𝑥))) |
| 108 | 102, 107 | sylibrd 167 |
. . . . . 6
⊢ (((𝐴 ∈ P ∧
𝑤
<Q 1Q) ∧ (𝑣 ∈ (1st
‘𝐴) ∧ (𝑣
·Q (*Q‘𝑤)) ∈ (2nd
‘𝐴))) →
(∃𝑧 ∈
(1st ‘𝐴)𝑣 <Q 𝑧 → 𝑤 ∈ (1st ‘(𝐴
·P 𝐵)))) |
| 109 | 12, 108 | mpd 13 |
. . . . 5
⊢ (((𝐴 ∈ P ∧
𝑤
<Q 1Q) ∧ (𝑣 ∈ (1st
‘𝐴) ∧ (𝑣
·Q (*Q‘𝑤)) ∈ (2nd
‘𝐴))) → 𝑤 ∈ (1st
‘(𝐴
·P 𝐵))) |
| 110 | 9, 109 | rexlimddv 2481 |
. . . 4
⊢ ((𝐴 ∈ P ∧
𝑤
<Q 1Q) → 𝑤 ∈ (1st
‘(𝐴
·P 𝐵))) |
| 111 | 110 | ex 113 |
. . 3
⊢ (𝐴 ∈ P →
(𝑤
<Q 1Q → 𝑤 ∈ (1st
‘(𝐴
·P 𝐵)))) |
| 112 | 2, 111 | syl5bi 150 |
. 2
⊢ (𝐴 ∈ P →
(𝑤 ∈ (1st
‘1P) → 𝑤 ∈ (1st ‘(𝐴
·P 𝐵)))) |
| 113 | 112 | ssrdv 3005 |
1
⊢ (𝐴 ∈ P →
(1st ‘1P) ⊆ (1st
‘(𝐴
·P 𝐵))) |