![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tpidm13 | GIF version |
Description: Unordered triple {𝐴, 𝐵, 𝐴} is just an overlong way to write {𝐴, 𝐵}. (Contributed by David A. Wheeler, 10-May-2015.) |
Ref | Expression |
---|---|
tpidm13 | ⊢ {𝐴, 𝐵, 𝐴} = {𝐴, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tprot 3485 | . 2 ⊢ {𝐴, 𝐴, 𝐵} = {𝐴, 𝐵, 𝐴} | |
2 | tpidm12 3491 | . 2 ⊢ {𝐴, 𝐴, 𝐵} = {𝐴, 𝐵} | |
3 | 1, 2 | eqtr3i 2103 | 1 ⊢ {𝐴, 𝐵, 𝐴} = {𝐴, 𝐵} |
Colors of variables: wff set class |
Syntax hints: = wceq 1284 {cpr 3399 {ctp 3400 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-3or 920 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-un 2977 df-sn 3404 df-pr 3405 df-tp 3406 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |