| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tpnz | GIF version | ||
| Description: A triplet containing a set is not empty. (Contributed by NM, 10-Apr-1994.) |
| Ref | Expression |
|---|---|
| tpnz.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| tpnz | ⊢ {𝐴, 𝐵, 𝐶} ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpnz.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | 1 | tpid1 3503 | . 2 ⊢ 𝐴 ∈ {𝐴, 𝐵, 𝐶} |
| 3 | ne0i 3257 | . 2 ⊢ (𝐴 ∈ {𝐴, 𝐵, 𝐶} → {𝐴, 𝐵, 𝐶} ≠ ∅) | |
| 4 | 2, 3 | ax-mp 7 | 1 ⊢ {𝐴, 𝐵, 𝐶} ≠ ∅ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 1433 ≠ wne 2245 Vcvv 2601 ∅c0 3251 {ctp 3400 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-v 2603 df-dif 2975 df-un 2977 df-nul 3252 df-sn 3404 df-pr 3405 df-tp 3406 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |