![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uniintsnr | GIF version |
Description: The union and intersection of a singleton are equal. See also eusn 3466. (Contributed by Jim Kingdon, 14-Aug-2018.) |
Ref | Expression |
---|---|
uniintsnr | ⊢ (∃𝑥 𝐴 = {𝑥} → ∪ 𝐴 = ∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2604 | . . . 4 ⊢ 𝑥 ∈ V | |
2 | 1 | unisn 3617 | . . 3 ⊢ ∪ {𝑥} = 𝑥 |
3 | unieq 3610 | . . 3 ⊢ (𝐴 = {𝑥} → ∪ 𝐴 = ∪ {𝑥}) | |
4 | inteq 3639 | . . . 4 ⊢ (𝐴 = {𝑥} → ∩ 𝐴 = ∩ {𝑥}) | |
5 | 1 | intsn 3671 | . . . 4 ⊢ ∩ {𝑥} = 𝑥 |
6 | 4, 5 | syl6eq 2129 | . . 3 ⊢ (𝐴 = {𝑥} → ∩ 𝐴 = 𝑥) |
7 | 2, 3, 6 | 3eqtr4a 2139 | . 2 ⊢ (𝐴 = {𝑥} → ∪ 𝐴 = ∩ 𝐴) |
8 | 7 | exlimiv 1529 | 1 ⊢ (∃𝑥 𝐴 = {𝑥} → ∪ 𝐴 = ∩ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1284 ∃wex 1421 {csn 3398 ∪ cuni 3601 ∩ cint 3636 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-sn 3404 df-pr 3405 df-uni 3602 df-int 3637 |
This theorem is referenced by: uniintabim 3673 |
Copyright terms: Public domain | W3C validator |