ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniintsnr GIF version

Theorem uniintsnr 3672
Description: The union and intersection of a singleton are equal. See also eusn 3466. (Contributed by Jim Kingdon, 14-Aug-2018.)
Assertion
Ref Expression
uniintsnr (∃𝑥 𝐴 = {𝑥} → 𝐴 = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem uniintsnr
StepHypRef Expression
1 vex 2604 . . . 4 𝑥 ∈ V
21unisn 3617 . . 3 {𝑥} = 𝑥
3 unieq 3610 . . 3 (𝐴 = {𝑥} → 𝐴 = {𝑥})
4 inteq 3639 . . . 4 (𝐴 = {𝑥} → 𝐴 = {𝑥})
51intsn 3671 . . . 4 {𝑥} = 𝑥
64, 5syl6eq 2129 . . 3 (𝐴 = {𝑥} → 𝐴 = 𝑥)
72, 3, 63eqtr4a 2139 . 2 (𝐴 = {𝑥} → 𝐴 = 𝐴)
87exlimiv 1529 1 (∃𝑥 𝐴 = {𝑥} → 𝐴 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1284  wex 1421  {csn 3398   cuni 3601   cint 3636
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-sn 3404  df-pr 3405  df-uni 3602  df-int 3637
This theorem is referenced by:  uniintabim  3673
  Copyright terms: Public domain W3C validator