| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unisn | GIF version | ||
| Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| unisn.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| unisn | ⊢ ∪ {𝐴} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 3412 | . . 3 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 2 | 1 | unieqi 3611 | . 2 ⊢ ∪ {𝐴} = ∪ {𝐴, 𝐴} |
| 3 | unisn.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 4 | 3, 3 | unipr 3615 | . 2 ⊢ ∪ {𝐴, 𝐴} = (𝐴 ∪ 𝐴) |
| 5 | unidm 3115 | . 2 ⊢ (𝐴 ∪ 𝐴) = 𝐴 | |
| 6 | 2, 4, 5 | 3eqtri 2105 | 1 ⊢ ∪ {𝐴} = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1284 ∈ wcel 1433 Vcvv 2601 ∪ cun 2971 {csn 3398 {cpr 3399 ∪ cuni 3601 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-v 2603 df-un 2977 df-sn 3404 df-pr 3405 df-uni 3602 |
| This theorem is referenced by: unisng 3618 uniintsnr 3672 unisuc 4168 op1sta 4822 op2nda 4825 elxp4 4828 uniabio 4897 iotass 4904 en1bg 6303 |
| Copyright terms: Public domain | W3C validator |