![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uniprg | GIF version |
Description: The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 25-Aug-2006.) |
Ref | Expression |
---|---|
uniprg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1 3469 | . . . 4 ⊢ (𝑥 = 𝐴 → {𝑥, 𝑦} = {𝐴, 𝑦}) | |
2 | 1 | unieqd 3612 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ {𝑥, 𝑦} = ∪ {𝐴, 𝑦}) |
3 | uneq1 3119 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ∪ 𝑦) = (𝐴 ∪ 𝑦)) | |
4 | 2, 3 | eqeq12d 2095 | . 2 ⊢ (𝑥 = 𝐴 → (∪ {𝑥, 𝑦} = (𝑥 ∪ 𝑦) ↔ ∪ {𝐴, 𝑦} = (𝐴 ∪ 𝑦))) |
5 | preq2 3470 | . . . 4 ⊢ (𝑦 = 𝐵 → {𝐴, 𝑦} = {𝐴, 𝐵}) | |
6 | 5 | unieqd 3612 | . . 3 ⊢ (𝑦 = 𝐵 → ∪ {𝐴, 𝑦} = ∪ {𝐴, 𝐵}) |
7 | uneq2 3120 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴 ∪ 𝑦) = (𝐴 ∪ 𝐵)) | |
8 | 6, 7 | eqeq12d 2095 | . 2 ⊢ (𝑦 = 𝐵 → (∪ {𝐴, 𝑦} = (𝐴 ∪ 𝑦) ↔ ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵))) |
9 | vex 2604 | . . 3 ⊢ 𝑥 ∈ V | |
10 | vex 2604 | . . 3 ⊢ 𝑦 ∈ V | |
11 | 9, 10 | unipr 3615 | . 2 ⊢ ∪ {𝑥, 𝑦} = (𝑥 ∪ 𝑦) |
12 | 4, 8, 11 | vtocl2g 2662 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1284 ∈ wcel 1433 ∪ cun 2971 {cpr 3399 ∪ cuni 3601 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-v 2603 df-un 2977 df-sn 3404 df-pr 3405 df-uni 3602 |
This theorem is referenced by: onun2 4234 |
Copyright terms: Public domain | W3C validator |