| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uniprg | GIF version | ||
| Description: The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 25-Aug-2006.) |
| Ref | Expression |
|---|---|
| uniprg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1 3469 | . . . 4 ⊢ (𝑥 = 𝐴 → {𝑥, 𝑦} = {𝐴, 𝑦}) | |
| 2 | 1 | unieqd 3612 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ {𝑥, 𝑦} = ∪ {𝐴, 𝑦}) |
| 3 | uneq1 3119 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ∪ 𝑦) = (𝐴 ∪ 𝑦)) | |
| 4 | 2, 3 | eqeq12d 2095 | . 2 ⊢ (𝑥 = 𝐴 → (∪ {𝑥, 𝑦} = (𝑥 ∪ 𝑦) ↔ ∪ {𝐴, 𝑦} = (𝐴 ∪ 𝑦))) |
| 5 | preq2 3470 | . . . 4 ⊢ (𝑦 = 𝐵 → {𝐴, 𝑦} = {𝐴, 𝐵}) | |
| 6 | 5 | unieqd 3612 | . . 3 ⊢ (𝑦 = 𝐵 → ∪ {𝐴, 𝑦} = ∪ {𝐴, 𝐵}) |
| 7 | uneq2 3120 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴 ∪ 𝑦) = (𝐴 ∪ 𝐵)) | |
| 8 | 6, 7 | eqeq12d 2095 | . 2 ⊢ (𝑦 = 𝐵 → (∪ {𝐴, 𝑦} = (𝐴 ∪ 𝑦) ↔ ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵))) |
| 9 | vex 2604 | . . 3 ⊢ 𝑥 ∈ V | |
| 10 | vex 2604 | . . 3 ⊢ 𝑦 ∈ V | |
| 11 | 9, 10 | unipr 3615 | . 2 ⊢ ∪ {𝑥, 𝑦} = (𝑥 ∪ 𝑦) |
| 12 | 4, 8, 11 | vtocl2g 2662 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 = wceq 1284 ∈ wcel 1433 ∪ cun 2971 {cpr 3399 ∪ cuni 3601 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-v 2603 df-un 2977 df-sn 3404 df-pr 3405 df-uni 3602 |
| This theorem is referenced by: onun2 4234 |
| Copyright terms: Public domain | W3C validator |