ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  wepo GIF version

Theorem wepo 4114
Description: A well-ordering is a partial ordering. (Contributed by Jim Kingdon, 23-Sep-2021.)
Assertion
Ref Expression
wepo ((𝑅 We 𝐴𝐴𝑉) → 𝑅 Po 𝐴)

Proof of Theorem wepo
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wefr 4113 . . . 4 (𝑅 We 𝐴𝑅 Fr 𝐴)
2 frirrg 4105 . . . 4 ((𝑅 Fr 𝐴𝐴𝑉𝑥𝐴) → ¬ 𝑥𝑅𝑥)
31, 2syl3an1 1202 . . 3 ((𝑅 We 𝐴𝐴𝑉𝑥𝐴) → ¬ 𝑥𝑅𝑥)
433expa 1138 . 2 (((𝑅 We 𝐴𝐴𝑉) ∧ 𝑥𝐴) → ¬ 𝑥𝑅𝑥)
5 df-3an 921 . . 3 ((𝑥𝐴𝑦𝐴𝑧𝐴) ↔ ((𝑥𝐴𝑦𝐴) ∧ 𝑧𝐴))
6 df-wetr 4089 . . . . . . . . . 10 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
76simprbi 269 . . . . . . . . 9 (𝑅 We 𝐴 → ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
87adantr 270 . . . . . . . 8 ((𝑅 We 𝐴𝐴𝑉) → ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
98r19.21bi 2449 . . . . . . 7 (((𝑅 We 𝐴𝐴𝑉) ∧ 𝑥𝐴) → ∀𝑦𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
109r19.21bi 2449 . . . . . 6 ((((𝑅 We 𝐴𝐴𝑉) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → ∀𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1110anasss 391 . . . . 5 (((𝑅 We 𝐴𝐴𝑉) ∧ (𝑥𝐴𝑦𝐴)) → ∀𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1211r19.21bi 2449 . . . 4 ((((𝑅 We 𝐴𝐴𝑉) ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1312anasss 391 . . 3 (((𝑅 We 𝐴𝐴𝑉) ∧ ((𝑥𝐴𝑦𝐴) ∧ 𝑧𝐴)) → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
145, 13sylan2b 281 . 2 (((𝑅 We 𝐴𝐴𝑉) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
154, 14ispod 4059 1 ((𝑅 We 𝐴𝐴𝑉) → 𝑅 Po 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  w3a 919  wcel 1433  wral 2348   class class class wbr 3785   Po wpo 4049   Fr wfr 4083   We wwe 4085
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-po 4051  df-frfor 4086  df-frind 4087  df-wetr 4089
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator