![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl3an1 | GIF version |
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
Ref | Expression |
---|---|
syl3an1.1 | ⊢ (𝜑 → 𝜓) |
syl3an1.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syl3an1 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an1.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | 3anim1i 1124 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
3 | syl3an1.2 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
4 | 2, 3 | syl 14 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 919 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 df-3an 921 |
This theorem is referenced by: syl3an1b 1205 syl3an1br 1208 wepo 4114 f1ofveu 5520 fovrnda 5664 smoiso 5940 omv 6058 oeiv 6059 nndi 6088 nnmsucr 6090 f1oen2g 6258 f1dom2g 6259 prarloclemarch2 6609 distrnq0 6649 ltprordil 6779 1idprl 6780 1idpru 6781 ltpopr 6785 ltexprlemopu 6793 ltexprlemdisj 6796 ltexprlemfl 6799 ltexprlemfu 6801 ltexprlemru 6802 recexprlemdisj 6820 recexprlemss1l 6825 recexprlemss1u 6826 cnegexlem1 7283 msqge0 7716 mulge0 7719 divnegap 7794 divdiv32ap 7808 divneg2ap 7824 peano2uz 8671 lbzbi 8701 negqmod0 9333 modqmuladdnn0 9370 expnlbnd 9597 shftfvalg 9706 gcd0id 10370 isprm3 10500 euclemma 10525 |
Copyright terms: Public domain | W3C validator |