| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpssres | GIF version | ||
| Description: Restriction of a constant function (or other cross product). (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| Ref | Expression |
|---|---|
| xpssres | ⊢ (𝐶 ⊆ 𝐴 → ((𝐴 × 𝐵) ↾ 𝐶) = (𝐶 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 4375 | . . 3 ⊢ ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐴 × 𝐵) ∩ (𝐶 × V)) | |
| 2 | inxp 4488 | . . 3 ⊢ ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) | |
| 3 | incom 3158 | . . . 4 ⊢ (𝐴 ∩ 𝐶) = (𝐶 ∩ 𝐴) | |
| 4 | inv1 3280 | . . . 4 ⊢ (𝐵 ∩ V) = 𝐵 | |
| 5 | 3, 4 | xpeq12i 4385 | . . 3 ⊢ ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) = ((𝐶 ∩ 𝐴) × 𝐵) |
| 6 | 1, 2, 5 | 3eqtri 2105 | . 2 ⊢ ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐶 ∩ 𝐴) × 𝐵) |
| 7 | df-ss 2986 | . . . 4 ⊢ (𝐶 ⊆ 𝐴 ↔ (𝐶 ∩ 𝐴) = 𝐶) | |
| 8 | 7 | biimpi 118 | . . 3 ⊢ (𝐶 ⊆ 𝐴 → (𝐶 ∩ 𝐴) = 𝐶) |
| 9 | 8 | xpeq1d 4386 | . 2 ⊢ (𝐶 ⊆ 𝐴 → ((𝐶 ∩ 𝐴) × 𝐵) = (𝐶 × 𝐵)) |
| 10 | 6, 9 | syl5eq 2125 | 1 ⊢ (𝐶 ⊆ 𝐴 → ((𝐴 × 𝐵) ↾ 𝐶) = (𝐶 × 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1284 Vcvv 2601 ∩ cin 2972 ⊆ wss 2973 × cxp 4361 ↾ cres 4365 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-opab 3840 df-xp 4369 df-rel 4370 df-res 4375 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |