ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resima2 GIF version

Theorem resima2 4662
Description: Image under a restricted class. (Contributed by FL, 31-Aug-2009.)
Assertion
Ref Expression
resima2 (𝐵𝐶 → ((𝐴𝐶) “ 𝐵) = (𝐴𝐵))

Proof of Theorem resima2
StepHypRef Expression
1 df-ima 4376 . 2 ((𝐴𝐶) “ 𝐵) = ran ((𝐴𝐶) ↾ 𝐵)
2 resres 4642 . . . 4 ((𝐴𝐶) ↾ 𝐵) = (𝐴 ↾ (𝐶𝐵))
32rneqi 4580 . . 3 ran ((𝐴𝐶) ↾ 𝐵) = ran (𝐴 ↾ (𝐶𝐵))
4 df-ss 2986 . . . 4 (𝐵𝐶 ↔ (𝐵𝐶) = 𝐵)
5 incom 3158 . . . . . . . 8 (𝐶𝐵) = (𝐵𝐶)
65a1i 9 . . . . . . 7 ((𝐵𝐶) = 𝐵 → (𝐶𝐵) = (𝐵𝐶))
76reseq2d 4630 . . . . . 6 ((𝐵𝐶) = 𝐵 → (𝐴 ↾ (𝐶𝐵)) = (𝐴 ↾ (𝐵𝐶)))
87rneqd 4581 . . . . 5 ((𝐵𝐶) = 𝐵 → ran (𝐴 ↾ (𝐶𝐵)) = ran (𝐴 ↾ (𝐵𝐶)))
9 reseq2 4625 . . . . . . 7 ((𝐵𝐶) = 𝐵 → (𝐴 ↾ (𝐵𝐶)) = (𝐴𝐵))
109rneqd 4581 . . . . . 6 ((𝐵𝐶) = 𝐵 → ran (𝐴 ↾ (𝐵𝐶)) = ran (𝐴𝐵))
11 df-ima 4376 . . . . . 6 (𝐴𝐵) = ran (𝐴𝐵)
1210, 11syl6eqr 2131 . . . . 5 ((𝐵𝐶) = 𝐵 → ran (𝐴 ↾ (𝐵𝐶)) = (𝐴𝐵))
138, 12eqtrd 2113 . . . 4 ((𝐵𝐶) = 𝐵 → ran (𝐴 ↾ (𝐶𝐵)) = (𝐴𝐵))
144, 13sylbi 119 . . 3 (𝐵𝐶 → ran (𝐴 ↾ (𝐶𝐵)) = (𝐴𝐵))
153, 14syl5eq 2125 . 2 (𝐵𝐶 → ran ((𝐴𝐶) ↾ 𝐵) = (𝐴𝐵))
161, 15syl5eq 2125 1 (𝐵𝐶 → ((𝐴𝐶) “ 𝐵) = (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1284  cin 2972  wss 2973  ran crn 4364  cres 4365  cima 4366
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-xp 4369  df-rel 4370  df-cnv 4371  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator