![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resima2 | GIF version |
Description: Image under a restricted class. (Contributed by FL, 31-Aug-2009.) |
Ref | Expression |
---|---|
resima2 | ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) “ 𝐵) = (𝐴 “ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 4376 | . 2 ⊢ ((𝐴 ↾ 𝐶) “ 𝐵) = ran ((𝐴 ↾ 𝐶) ↾ 𝐵) | |
2 | resres 4642 | . . . 4 ⊢ ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ (𝐶 ∩ 𝐵)) | |
3 | 2 | rneqi 4580 | . . 3 ⊢ ran ((𝐴 ↾ 𝐶) ↾ 𝐵) = ran (𝐴 ↾ (𝐶 ∩ 𝐵)) |
4 | df-ss 2986 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐵 ∩ 𝐶) = 𝐵) | |
5 | incom 3158 | . . . . . . . 8 ⊢ (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶) | |
6 | 5 | a1i 9 | . . . . . . 7 ⊢ ((𝐵 ∩ 𝐶) = 𝐵 → (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶)) |
7 | 6 | reseq2d 4630 | . . . . . 6 ⊢ ((𝐵 ∩ 𝐶) = 𝐵 → (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 ↾ (𝐵 ∩ 𝐶))) |
8 | 7 | rneqd 4581 | . . . . 5 ⊢ ((𝐵 ∩ 𝐶) = 𝐵 → ran (𝐴 ↾ (𝐶 ∩ 𝐵)) = ran (𝐴 ↾ (𝐵 ∩ 𝐶))) |
9 | reseq2 4625 | . . . . . . 7 ⊢ ((𝐵 ∩ 𝐶) = 𝐵 → (𝐴 ↾ (𝐵 ∩ 𝐶)) = (𝐴 ↾ 𝐵)) | |
10 | 9 | rneqd 4581 | . . . . . 6 ⊢ ((𝐵 ∩ 𝐶) = 𝐵 → ran (𝐴 ↾ (𝐵 ∩ 𝐶)) = ran (𝐴 ↾ 𝐵)) |
11 | df-ima 4376 | . . . . . 6 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
12 | 10, 11 | syl6eqr 2131 | . . . . 5 ⊢ ((𝐵 ∩ 𝐶) = 𝐵 → ran (𝐴 ↾ (𝐵 ∩ 𝐶)) = (𝐴 “ 𝐵)) |
13 | 8, 12 | eqtrd 2113 | . . . 4 ⊢ ((𝐵 ∩ 𝐶) = 𝐵 → ran (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 “ 𝐵)) |
14 | 4, 13 | sylbi 119 | . . 3 ⊢ (𝐵 ⊆ 𝐶 → ran (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 “ 𝐵)) |
15 | 3, 14 | syl5eq 2125 | . 2 ⊢ (𝐵 ⊆ 𝐶 → ran ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 “ 𝐵)) |
16 | 1, 15 | syl5eq 2125 | 1 ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) “ 𝐵) = (𝐴 “ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1284 ∩ cin 2972 ⊆ wss 2973 ran crn 4364 ↾ cres 4365 “ cima 4366 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-xp 4369 df-rel 4370 df-cnv 4371 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |