MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ax6elem Structured version   Visualization version   Unicode version

Theorem 2ax6elem 2449
Description: We can always find values matching  x and  y, as long as they are represented by distinct variables. This theorem merges two ax6e 2250 instances  E. z z  =  x and  E. w w  =  y into a common expression. Alan Sare contributed a variant of this theorem with distinct variable conditions before, see ax6e2nd 38774. (Contributed by Wolf Lammen, 27-Sep-2018.)
Assertion
Ref Expression
2ax6elem  |-  ( -. 
A. w  w  =  z  ->  E. z E. w ( z  =  x  /\  w  =  y ) )

Proof of Theorem 2ax6elem
StepHypRef Expression
1 ax6e 2250 . . . 4  |-  E. z 
z  =  x
2 nfnae 2318 . . . . . 6  |-  F/ z  -.  A. w  w  =  z
3 nfnae 2318 . . . . . 6  |-  F/ z  -.  A. w  w  =  x
42, 3nfan 1828 . . . . 5  |-  F/ z ( -.  A. w  w  =  z  /\  -.  A. w  w  =  x )
5 nfeqf 2301 . . . . . 6  |-  ( ( -.  A. w  w  =  z  /\  -.  A. w  w  =  x )  ->  F/ w  z  =  x )
6 pm3.21 464 . . . . . 6  |-  ( w  =  y  ->  (
z  =  x  -> 
( z  =  x  /\  w  =  y ) ) )
75, 6spimed 2255 . . . . 5  |-  ( ( -.  A. w  w  =  z  /\  -.  A. w  w  =  x )  ->  ( z  =  x  ->  E. w
( z  =  x  /\  w  =  y ) ) )
84, 7eximd 2085 . . . 4  |-  ( ( -.  A. w  w  =  z  /\  -.  A. w  w  =  x )  ->  ( E. z  z  =  x  ->  E. z E. w
( z  =  x  /\  w  =  y ) ) )
91, 8mpi 20 . . 3  |-  ( ( -.  A. w  w  =  z  /\  -.  A. w  w  =  x )  ->  E. z E. w ( z  =  x  /\  w  =  y ) )
109ex 450 . 2  |-  ( -. 
A. w  w  =  z  ->  ( -.  A. w  w  =  x  ->  E. z E. w
( z  =  x  /\  w  =  y ) ) )
11 ax6e 2250 . . 3  |-  E. z 
z  =  y
12 nfae 2316 . . . 4  |-  F/ z A. w  w  =  x
13 equvini 2346 . . . . 5  |-  ( z  =  y  ->  E. w
( z  =  w  /\  w  =  y ) )
14 equtrr 1949 . . . . . . 7  |-  ( w  =  x  ->  (
z  =  w  -> 
z  =  x ) )
1514anim1d 588 . . . . . 6  |-  ( w  =  x  ->  (
( z  =  w  /\  w  =  y )  ->  ( z  =  x  /\  w  =  y ) ) )
1615aleximi 1759 . . . . 5  |-  ( A. w  w  =  x  ->  ( E. w ( z  =  w  /\  w  =  y )  ->  E. w ( z  =  x  /\  w  =  y ) ) )
1713, 16syl5 34 . . . 4  |-  ( A. w  w  =  x  ->  ( z  =  y  ->  E. w ( z  =  x  /\  w  =  y ) ) )
1812, 17eximd 2085 . . 3  |-  ( A. w  w  =  x  ->  ( E. z  z  =  y  ->  E. z E. w ( z  =  x  /\  w  =  y ) ) )
1911, 18mpi 20 . 2  |-  ( A. w  w  =  x  ->  E. z E. w
( z  =  x  /\  w  =  y ) )
2010, 19pm2.61d2 172 1  |-  ( -. 
A. w  w  =  z  ->  E. z E. w ( z  =  x  /\  w  =  y ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384   A.wal 1481   E.wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710
This theorem is referenced by:  2ax6e  2450
  Copyright terms: Public domain W3C validator