| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ax6elem | Structured version Visualization version Unicode version | ||
| Description: We can always find values
matching |
| Ref | Expression |
|---|---|
| 2ax6elem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax6e 2250 |
. . . 4
| |
| 2 | nfnae 2318 |
. . . . . 6
| |
| 3 | nfnae 2318 |
. . . . . 6
| |
| 4 | 2, 3 | nfan 1828 |
. . . . 5
|
| 5 | nfeqf 2301 |
. . . . . 6
| |
| 6 | pm3.21 464 |
. . . . . 6
| |
| 7 | 5, 6 | spimed 2255 |
. . . . 5
|
| 8 | 4, 7 | eximd 2085 |
. . . 4
|
| 9 | 1, 8 | mpi 20 |
. . 3
|
| 10 | 9 | ex 450 |
. 2
|
| 11 | ax6e 2250 |
. . 3
| |
| 12 | nfae 2316 |
. . . 4
| |
| 13 | equvini 2346 |
. . . . 5
| |
| 14 | equtrr 1949 |
. . . . . . 7
| |
| 15 | 14 | anim1d 588 |
. . . . . 6
|
| 16 | 15 | aleximi 1759 |
. . . . 5
|
| 17 | 13, 16 | syl5 34 |
. . . 4
|
| 18 | 12, 17 | eximd 2085 |
. . 3
|
| 19 | 11, 18 | mpi 20 |
. 2
|
| 20 | 10, 19 | pm2.61d2 172 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: 2ax6e 2450 |
| Copyright terms: Public domain | W3C validator |