| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equvini | Structured version Visualization version Unicode version | ||
| Description: A variable introduction
law for equality. Lemma 15 of [Monk2] p. 109,
however we do not require |
| Ref | Expression |
|---|---|
| equvini |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equtr 1948 |
. . . 4
| |
| 2 | equeuclr 1950 |
. . . . 5
| |
| 3 | 2 | anc2ri 581 |
. . . 4
|
| 4 | 1, 3 | syli 39 |
. . 3
|
| 5 | 19.8a 2052 |
. . 3
| |
| 6 | 4, 5 | syl6 35 |
. 2
|
| 7 | ax13 2249 |
. . 3
| |
| 8 | ax6e 2250 |
. . . . 5
| |
| 9 | 8, 3 | eximii 1764 |
. . . 4
|
| 10 | 9 | 19.35i 1806 |
. . 3
|
| 11 | 7, 10 | syl6 35 |
. 2
|
| 12 | 6, 11 | pm2.61i 176 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 |
| This theorem is referenced by: 2ax6elem 2449 |
| Copyright terms: Public domain | W3C validator |