| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2reurex | Structured version Visualization version Unicode version | ||
| Description: Double restricted quantification with existential uniqueness, analogous to 2euex 2544. (Contributed by Alexander van der Vekens, 24-Jun-2017.) |
| Ref | Expression |
|---|---|
| 2reurex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reu5 3159 |
. 2
| |
| 2 | rexcom 3099 |
. . . 4
| |
| 3 | nfcv 2764 |
. . . . . 6
| |
| 4 | nfre1 3005 |
. . . . . 6
| |
| 5 | 3, 4 | nfrmo 3115 |
. . . . 5
|
| 6 | rspe 3003 |
. . . . . . . . . . 11
| |
| 7 | 6 | ex 450 |
. . . . . . . . . 10
|
| 8 | 7 | ralrimivw 2967 |
. . . . . . . . 9
|
| 9 | rmoim 3407 |
. . . . . . . . 9
| |
| 10 | 8, 9 | syl 17 |
. . . . . . . 8
|
| 11 | 10 | impcom 446 |
. . . . . . 7
|
| 12 | rmo5 3162 |
. . . . . . 7
| |
| 13 | 11, 12 | sylib 208 |
. . . . . 6
|
| 14 | 13 | ex 450 |
. . . . 5
|
| 15 | 5, 14 | reximdai 3012 |
. . . 4
|
| 16 | 2, 15 | syl5bi 232 |
. . 3
|
| 17 | 16 | impcom 446 |
. 2
|
| 18 | 1, 17 | sylbi 207 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 |
| This theorem is referenced by: 2rexreu 41185 |
| Copyright terms: Public domain | W3C validator |