| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reuan | Structured version Visualization version Unicode version | ||
| Description: Introduction of a conjunct into restricted uniqueness quantifier, analogous to euan 2530. (Contributed by Alexander van der Vekens, 2-Jul-2017.) |
| Ref | Expression |
|---|---|
| rmoanim.1 |
|
| Ref | Expression |
|---|---|
| reuan |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmoanim.1 |
. . . . . 6
| |
| 2 | simpl 473 |
. . . . . . 7
| |
| 3 | 2 | a1i 11 |
. . . . . 6
|
| 4 | 1, 3 | rexlimi 3024 |
. . . . 5
|
| 5 | 4 | adantr 481 |
. . . 4
|
| 6 | simpr 477 |
. . . . . 6
| |
| 7 | 6 | reximi 3011 |
. . . . 5
|
| 8 | 7 | adantr 481 |
. . . 4
|
| 9 | nfre1 3005 |
. . . . . 6
| |
| 10 | 4 | adantr 481 |
. . . . . . . . 9
|
| 11 | 10 | a1d 25 |
. . . . . . . 8
|
| 12 | 11 | ancrd 577 |
. . . . . . 7
|
| 13 | 6, 12 | impbid2 216 |
. . . . . 6
|
| 14 | 9, 13 | rmobida 3129 |
. . . . 5
|
| 15 | 14 | biimpa 501 |
. . . 4
|
| 16 | 5, 8, 15 | jca32 558 |
. . 3
|
| 17 | reu5 3159 |
. . 3
| |
| 18 | reu5 3159 |
. . . 4
| |
| 19 | 18 | anbi2i 730 |
. . 3
|
| 20 | 16, 17, 19 | 3imtr4i 281 |
. 2
|
| 21 | ibar 525 |
. . . . 5
| |
| 22 | 21 | adantr 481 |
. . . 4
|
| 23 | 1, 22 | reubida 3124 |
. . 3
|
| 24 | 23 | biimpa 501 |
. 2
|
| 25 | 20, 24 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 df-eu 2474 df-mo 2475 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 |
| This theorem is referenced by: 2reu7 41191 2reu8 41192 |
| Copyright terms: Public domain | W3C validator |