![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexcom | Structured version Visualization version Unicode version |
Description: Commutation of restricted existential quantifiers. (Contributed by NM, 19-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
rexcom |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2764 |
. 2
![]() ![]() ![]() ![]() | |
2 | nfcv 2764 |
. 2
![]() ![]() ![]() ![]() | |
3 | 1, 2 | rexcomf 3097 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 |
This theorem is referenced by: rexcom13 3101 rexcom4 3225 iuncom 4527 xpiundi 5173 brdom7disj 9353 addcompr 9843 mulcompr 9845 qmulz 11791 caubnd2 14097 ello1mpt2 14253 o1lo1 14268 lo1add 14357 lo1mul 14358 rlimno1 14384 sqrt2irr 14979 bezoutlem2 15257 bezoutlem4 15259 pythagtriplem19 15538 lsmcom2 18070 efgrelexlemb 18163 lsmcomx 18259 pgpfac1lem2 18474 pgpfac1lem4 18477 regsep2 21180 ordthaus 21188 tgcmp 21204 txcmplem1 21444 xkococnlem 21462 regr1lem2 21543 dyadmax 23366 coeeu 23981 ostth 25328 axpasch 25821 axeuclidlem 25842 usgr2pth0 26661 elwwlks2 26861 elwspths2spth 26862 shscom 28178 mdsymlem4 29265 mdsymlem8 29269 ordtconnlem1 29970 cvmliftlem15 31280 lshpsmreu 34396 islpln5 34821 islvol5 34865 paddcom 35099 mapdrvallem2 36934 hdmapglem7a 37219 fourierdlem42 40366 2rexsb 41170 2rexrsb 41171 2reurex 41181 2reu1 41186 2reu4a 41189 pgrpgt2nabl 42147 islindeps2 42272 isldepslvec2 42274 |
Copyright terms: Public domain | W3C validator |