| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2uasbanhVD | Structured version Visualization version Unicode version | ||
Description: The following User's Proof is a Virtual Deduction proof (see wvd1 38785)
completed automatically by a Metamath tools program invoking mmj2 and
the Metamath Proof Assistant. 2uasbanh 38777 is 2uasbanhVD 39147 without
virtual deductions and was automatically derived from 2uasbanhVD 39147.
(Contributed by Alan Sare, 31-May-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| Ref | Expression |
|---|---|
| 2uasbanhVD.1 |
|
| Ref | Expression |
|---|---|
| 2uasbanhVD |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idn1 38790 |
. . . . . . . 8
| |
| 2 | simpl 473 |
. . . . . . . 8
| |
| 3 | 1, 2 | e1a 38852 |
. . . . . . 7
|
| 4 | simpr 477 |
. . . . . . . . 9
| |
| 5 | 1, 4 | e1a 38852 |
. . . . . . . 8
|
| 6 | simpl 473 |
. . . . . . . 8
| |
| 7 | 5, 6 | e1a 38852 |
. . . . . . 7
|
| 8 | pm3.2 463 |
. . . . . . 7
| |
| 9 | 3, 7, 8 | e11 38913 |
. . . . . 6
|
| 10 | 9 | in1 38787 |
. . . . 5
|
| 11 | 10 | eximi 1762 |
. . . 4
|
| 12 | 11 | eximi 1762 |
. . 3
|
| 13 | simpr 477 |
. . . . . . . 8
| |
| 14 | 5, 13 | e1a 38852 |
. . . . . . 7
|
| 15 | pm3.2 463 |
. . . . . . 7
| |
| 16 | 3, 14, 15 | e11 38913 |
. . . . . 6
|
| 17 | 16 | in1 38787 |
. . . . 5
|
| 18 | 17 | eximi 1762 |
. . . 4
|
| 19 | 18 | eximi 1762 |
. . 3
|
| 20 | 12, 19 | jca 554 |
. 2
|
| 21 | 2uasbanhVD.1 |
. . 3
| |
| 22 | 21 | biimpi 206 |
. . . . . . . . 9
|
| 23 | 22 | dfvd1ir 38789 |
. . . . . . . 8
|
| 24 | simpl 473 |
. . . . . . . 8
| |
| 25 | 23, 24 | e1a 38852 |
. . . . . . 7
|
| 26 | simpl 473 |
. . . . . . . . . . 11
| |
| 27 | 26 | 2eximi 1763 |
. . . . . . . . . 10
|
| 28 | 25, 27 | e1a 38852 |
. . . . . . . . 9
|
| 29 | ax6e2ndeq 38775 |
. . . . . . . . . 10
| |
| 30 | 29 | biimpri 218 |
. . . . . . . . 9
|
| 31 | 28, 30 | e1a 38852 |
. . . . . . . 8
|
| 32 | 2sb5nd 38776 |
. . . . . . . 8
| |
| 33 | 31, 32 | e1a 38852 |
. . . . . . 7
|
| 34 | biimpr 210 |
. . . . . . . 8
| |
| 35 | 34 | com12 32 |
. . . . . . 7
|
| 36 | 25, 33, 35 | e11 38913 |
. . . . . 6
|
| 37 | simpr 477 |
. . . . . . . 8
| |
| 38 | 23, 37 | e1a 38852 |
. . . . . . 7
|
| 39 | 2sb5nd 38776 |
. . . . . . . 8
| |
| 40 | 31, 39 | e1a 38852 |
. . . . . . 7
|
| 41 | biimpr 210 |
. . . . . . . 8
| |
| 42 | 41 | com12 32 |
. . . . . . 7
|
| 43 | 38, 40, 42 | e11 38913 |
. . . . . 6
|
| 44 | sban 2399 |
. . . . . . . 8
| |
| 45 | 44 | sbbii 1887 |
. . . . . . 7
|
| 46 | sban 2399 |
. . . . . . 7
| |
| 47 | 45, 46 | bitri 264 |
. . . . . 6
|
| 48 | simplbi2comt 656 |
. . . . . . 7
| |
| 49 | 48 | com13 88 |
. . . . . 6
|
| 50 | 36, 43, 47, 49 | e110 38901 |
. . . . 5
|
| 51 | 2sb5nd 38776 |
. . . . . 6
| |
| 52 | 31, 51 | e1a 38852 |
. . . . 5
|
| 53 | biimp 205 |
. . . . . 6
| |
| 54 | 53 | com12 32 |
. . . . 5
|
| 55 | 50, 52, 54 | e11 38913 |
. . . 4
|
| 56 | 55 | in1 38787 |
. . 3
|
| 57 | 21, 56 | sylbir 225 |
. 2
|
| 58 | 20, 57 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-ne 2795 df-v 3202 df-vd1 38786 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |