Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax6e2ndeq Structured version   Visualization version   Unicode version

Theorem ax6e2ndeq 38775
Description: "At least two sets exist" expressed in the form of dtru 4857 is logically equivalent to the same expressed in a form similar to ax6e 2250 if dtru 4857 is false implies  u  =  v. ax6e2ndeq 38775 is derived from ax6e2ndeqVD 39145. (Contributed by Alan Sare, 25-Mar-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ax6e2ndeq  |-  ( ( -.  A. x  x  =  y  \/  u  =  v )  <->  E. x E. y ( x  =  u  /\  y  =  v ) )
Distinct variable groups:    x, u    y, u    x, v    y,
v

Proof of Theorem ax6e2ndeq
StepHypRef Expression
1 ax6e2nd 38774 . . 3  |-  ( -. 
A. x  x  =  y  ->  E. x E. y ( x  =  u  /\  y  =  v ) )
2 ax6e2eq 38773 . . . 4  |-  ( A. x  x  =  y  ->  ( u  =  v  ->  E. x E. y
( x  =  u  /\  y  =  v ) ) )
31a1d 25 . . . 4  |-  ( -. 
A. x  x  =  y  ->  ( u  =  v  ->  E. x E. y ( x  =  u  /\  y  =  v ) ) )
42, 3pm2.61i 176 . . 3  |-  ( u  =  v  ->  E. x E. y ( x  =  u  /\  y  =  v ) )
51, 4jaoi 394 . 2  |-  ( ( -.  A. x  x  =  y  \/  u  =  v )  ->  E. x E. y ( x  =  u  /\  y  =  v )
)
6 olc 399 . . . 4  |-  ( u  =  v  ->  ( -.  A. x  x  =  y  \/  u  =  v ) )
76a1d 25 . . 3  |-  ( u  =  v  ->  ( E. x E. y ( x  =  u  /\  y  =  v )  ->  ( -.  A. x  x  =  y  \/  u  =  v )
) )
8 excom 2042 . . . . . 6  |-  ( E. x E. y ( x  =  u  /\  y  =  v )  <->  E. y E. x ( x  =  u  /\  y  =  v )
)
9 neeq1 2856 . . . . . . . . . . . . 13  |-  ( x  =  u  ->  (
x  =/=  v  <->  u  =/=  v ) )
109biimprcd 240 . . . . . . . . . . . 12  |-  ( u  =/=  v  ->  (
x  =  u  ->  x  =/=  v ) )
1110adantrd 484 . . . . . . . . . . 11  |-  ( u  =/=  v  ->  (
( x  =  u  /\  y  =  v )  ->  x  =/=  v ) )
12 simpr 477 . . . . . . . . . . . 12  |-  ( ( x  =  u  /\  y  =  v )  ->  y  =  v )
1312a1i 11 . . . . . . . . . . 11  |-  ( u  =/=  v  ->  (
( x  =  u  /\  y  =  v )  ->  y  =  v ) )
14 neeq2 2857 . . . . . . . . . . . 12  |-  ( y  =  v  ->  (
x  =/=  y  <->  x  =/=  v ) )
1514biimprcd 240 . . . . . . . . . . 11  |-  ( x  =/=  v  ->  (
y  =  v  ->  x  =/=  y ) )
1611, 13, 15syl6c 70 . . . . . . . . . 10  |-  ( u  =/=  v  ->  (
( x  =  u  /\  y  =  v )  ->  x  =/=  y ) )
17 sp 2053 . . . . . . . . . . 11  |-  ( A. x  x  =  y  ->  x  =  y )
1817necon3ai 2819 . . . . . . . . . 10  |-  ( x  =/=  y  ->  -.  A. x  x  =  y )
1916, 18syl6 35 . . . . . . . . 9  |-  ( u  =/=  v  ->  (
( x  =  u  /\  y  =  v )  ->  -.  A. x  x  =  y )
)
2019eximdv 1846 . . . . . . . 8  |-  ( u  =/=  v  ->  ( E. x ( x  =  u  /\  y  =  v )  ->  E. x  -.  A. x  x  =  y ) )
21 nfnae 2318 . . . . . . . . 9  |-  F/ x  -.  A. x  x  =  y
222119.9 2072 . . . . . . . 8  |-  ( E. x  -.  A. x  x  =  y  <->  -.  A. x  x  =  y )
2320, 22syl6ib 241 . . . . . . 7  |-  ( u  =/=  v  ->  ( E. x ( x  =  u  /\  y  =  v )  ->  -.  A. x  x  =  y ) )
2423eximdv 1846 . . . . . 6  |-  ( u  =/=  v  ->  ( E. y E. x ( x  =  u  /\  y  =  v )  ->  E. y  -.  A. x  x  =  y
) )
258, 24syl5bi 232 . . . . 5  |-  ( u  =/=  v  ->  ( E. x E. y ( x  =  u  /\  y  =  v )  ->  E. y  -.  A. x  x  =  y
) )
26 nfnae 2318 . . . . . 6  |-  F/ y  -.  A. x  x  =  y
272619.9 2072 . . . . 5  |-  ( E. y  -.  A. x  x  =  y  <->  -.  A. x  x  =  y )
2825, 27syl6ib 241 . . . 4  |-  ( u  =/=  v  ->  ( E. x E. y ( x  =  u  /\  y  =  v )  ->  -.  A. x  x  =  y ) )
29 orc 400 . . . 4  |-  ( -. 
A. x  x  =  y  ->  ( -.  A. x  x  =  y  \/  u  =  v ) )
3028, 29syl6 35 . . 3  |-  ( u  =/=  v  ->  ( E. x E. y ( x  =  u  /\  y  =  v )  ->  ( -.  A. x  x  =  y  \/  u  =  v )
) )
317, 30pm2.61ine 2877 . 2  |-  ( E. x E. y ( x  =  u  /\  y  =  v )  ->  ( -.  A. x  x  =  y  \/  u  =  v )
)
325, 31impbii 199 1  |-  ( ( -.  A. x  x  =  y  \/  u  =  v )  <->  E. x E. y ( x  =  u  /\  y  =  v ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704    =/= wne 2794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-ne 2795  df-v 3202
This theorem is referenced by:  2sb5nd  38776  2uasbanh  38777  2sb5ndVD  39146  2uasbanhVD  39147  2sb5ndALT  39168
  Copyright terms: Public domain W3C validator