![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anidm23 | Structured version Visualization version Unicode version |
Description: Inference from idempotent law for conjunction. (Contributed by NM, 1-Feb-2007.) |
Ref | Expression |
---|---|
3anidm23.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3anidm23 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anidm23.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | 3expa 1265 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | anabss3 864 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
This theorem is referenced by: supsn 8378 infsn 8410 grusn 9626 subeq0 10307 halfaddsub 11265 avglt2 11271 modabs2 12704 efsub 14830 sinmul 14902 divalgmod 15129 divalgmodOLD 15130 modgcd 15253 pythagtriplem4 15524 pythagtriplem16 15535 pltirr 16963 latjidm 17074 latmidm 17086 ipopos 17160 mulgmodid 17581 f1omvdcnv 17864 lsmss1 18079 zntoslem 19905 obsipid 20066 smadiadetlem2 20470 smadiadet 20476 ordtt1 21183 xmet0 22147 nmsq 22994 tchcphlem3 23032 tchcph 23036 grpoidinvlem1 27358 grpodivid 27396 nvmid 27514 ipidsq 27565 5oalem1 28513 3oalem2 28522 unopf1o 28775 unopnorm 28776 hmopre 28782 ballotlemfc0 30554 ballotlemfcc 30555 pdivsq 31635 gcdabsorb 31638 cgr3rflx 32161 endofsegid 32192 tailini 32371 nnssi2 32454 nndivlub 32457 opoccl 34481 opococ 34482 opexmid 34494 opnoncon 34495 cmtidN 34544 ltrniotaidvalN 35871 pell14qrexpclnn0 37430 rmxdbl 37504 rmydbl 37505 rhmsubclem3 42088 rhmsubcALTVlem3 42106 |
Copyright terms: Public domain | W3C validator |