| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pythagtriplem4 | Structured version Visualization version Unicode version | ||
| Description: Lemma for pythagtrip 15539. Show that |
| Ref | Expression |
|---|---|
| pythagtriplem4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3r 1090 |
. . 3
| |
| 2 | nnz 11399 |
. . . . . . . . . . . . 13
| |
| 3 | nnz 11399 |
. . . . . . . . . . . . 13
| |
| 4 | zsubcl 11419 |
. . . . . . . . . . . . 13
| |
| 5 | 2, 3, 4 | syl2anr 495 |
. . . . . . . . . . . 12
|
| 6 | 5 | 3adant1 1079 |
. . . . . . . . . . 11
|
| 7 | 6 | 3ad2ant1 1082 |
. . . . . . . . . 10
|
| 8 | simp13 1093 |
. . . . . . . . . . . 12
| |
| 9 | simp12 1092 |
. . . . . . . . . . . 12
| |
| 10 | 8, 9 | nnaddcld 11067 |
. . . . . . . . . . 11
|
| 11 | 10 | nnzd 11481 |
. . . . . . . . . 10
|
| 12 | gcddvds 15225 |
. . . . . . . . . 10
| |
| 13 | 7, 11, 12 | syl2anc 693 |
. . . . . . . . 9
|
| 14 | 13 | simprd 479 |
. . . . . . . 8
|
| 15 | breq1 4656 |
. . . . . . . . 9
| |
| 16 | 15 | biimpd 219 |
. . . . . . . 8
|
| 17 | 14, 16 | mpan9 486 |
. . . . . . 7
|
| 18 | simpl13 1138 |
. . . . . . . . . 10
| |
| 19 | 18 | nnzd 11481 |
. . . . . . . . 9
|
| 20 | simpl12 1137 |
. . . . . . . . . 10
| |
| 21 | 20 | nnzd 11481 |
. . . . . . . . 9
|
| 22 | 19, 21 | zaddcld 11486 |
. . . . . . . 8
|
| 23 | 19, 21 | zsubcld 11487 |
. . . . . . . 8
|
| 24 | 2z 11409 |
. . . . . . . . 9
| |
| 25 | dvdsmultr1 15019 |
. . . . . . . . 9
| |
| 26 | 24, 25 | mp3an1 1411 |
. . . . . . . 8
|
| 27 | 22, 23, 26 | syl2anc 693 |
. . . . . . 7
|
| 28 | 17, 27 | mpd 15 |
. . . . . 6
|
| 29 | 18 | nncnd 11036 |
. . . . . . 7
|
| 30 | 20 | nncnd 11036 |
. . . . . . 7
|
| 31 | subsq 12972 |
. . . . . . 7
| |
| 32 | 29, 30, 31 | syl2anc 693 |
. . . . . 6
|
| 33 | 28, 32 | breqtrrd 4681 |
. . . . 5
|
| 34 | simpl2 1065 |
. . . . . . 7
| |
| 35 | 34 | oveq1d 6665 |
. . . . . 6
|
| 36 | simpl11 1136 |
. . . . . . . . 9
| |
| 37 | 36 | nnsqcld 13029 |
. . . . . . . 8
|
| 38 | 37 | nncnd 11036 |
. . . . . . 7
|
| 39 | 20 | nnsqcld 13029 |
. . . . . . . 8
|
| 40 | 39 | nncnd 11036 |
. . . . . . 7
|
| 41 | 38, 40 | pncand 10393 |
. . . . . 6
|
| 42 | 35, 41 | eqtr3d 2658 |
. . . . 5
|
| 43 | 33, 42 | breqtrd 4679 |
. . . 4
|
| 44 | nnz 11399 |
. . . . . . . 8
| |
| 45 | 44 | 3ad2ant1 1082 |
. . . . . . 7
|
| 46 | 45 | 3ad2ant1 1082 |
. . . . . 6
|
| 47 | 46 | adantr 481 |
. . . . 5
|
| 48 | 2prm 15405 |
. . . . . 6
| |
| 49 | 2nn 11185 |
. . . . . 6
| |
| 50 | prmdvdsexp 15427 |
. . . . . 6
| |
| 51 | 48, 49, 50 | mp3an13 1415 |
. . . . 5
|
| 52 | 47, 51 | syl 17 |
. . . 4
|
| 53 | 43, 52 | mpbid 222 |
. . 3
|
| 54 | 1, 53 | mtand 691 |
. 2
|
| 55 | neg1z 11413 |
. . . . . . . . 9
| |
| 56 | gcdaddm 15246 |
. . . . . . . . 9
| |
| 57 | 55, 56 | mp3an1 1411 |
. . . . . . . 8
|
| 58 | 7, 11, 57 | syl2anc 693 |
. . . . . . 7
|
| 59 | 8 | nncnd 11036 |
. . . . . . . 8
|
| 60 | 9 | nncnd 11036 |
. . . . . . . 8
|
| 61 | pnncan 10322 |
. . . . . . . . . . 11
| |
| 62 | 61 | 3anidm23 1385 |
. . . . . . . . . 10
|
| 63 | subcl 10280 |
. . . . . . . . . . . . 13
| |
| 64 | 63 | mulm1d 10482 |
. . . . . . . . . . . 12
|
| 65 | 64 | oveq2d 6666 |
. . . . . . . . . . 11
|
| 66 | addcl 10018 |
. . . . . . . . . . . 12
| |
| 67 | 66, 63 | negsubd 10398 |
. . . . . . . . . . 11
|
| 68 | 65, 67 | eqtrd 2656 |
. . . . . . . . . 10
|
| 69 | 2times 11145 |
. . . . . . . . . . 11
| |
| 70 | 69 | adantl 482 |
. . . . . . . . . 10
|
| 71 | 62, 68, 70 | 3eqtr4d 2666 |
. . . . . . . . 9
|
| 72 | 71 | oveq2d 6666 |
. . . . . . . 8
|
| 73 | 59, 60, 72 | syl2anc 693 |
. . . . . . 7
|
| 74 | 58, 73 | eqtrd 2656 |
. . . . . 6
|
| 75 | 9 | nnzd 11481 |
. . . . . . . . 9
|
| 76 | zmulcl 11426 |
. . . . . . . . 9
| |
| 77 | 24, 75, 76 | sylancr 695 |
. . . . . . . 8
|
| 78 | gcddvds 15225 |
. . . . . . . 8
| |
| 79 | 7, 77, 78 | syl2anc 693 |
. . . . . . 7
|
| 80 | 79 | simprd 479 |
. . . . . 6
|
| 81 | 74, 80 | eqbrtrd 4675 |
. . . . 5
|
| 82 | 1z 11407 |
. . . . . . . . 9
| |
| 83 | gcdaddm 15246 |
. . . . . . . . 9
| |
| 84 | 82, 83 | mp3an1 1411 |
. . . . . . . 8
|
| 85 | 7, 11, 84 | syl2anc 693 |
. . . . . . 7
|
| 86 | ppncan 10323 |
. . . . . . . . . . 11
| |
| 87 | 86 | 3anidm13 1384 |
. . . . . . . . . 10
|
| 88 | 63 | mulid2d 10058 |
. . . . . . . . . . 11
|
| 89 | 88 | oveq2d 6666 |
. . . . . . . . . 10
|
| 90 | 2times 11145 |
. . . . . . . . . . 11
| |
| 91 | 90 | adantr 481 |
. . . . . . . . . 10
|
| 92 | 87, 89, 91 | 3eqtr4d 2666 |
. . . . . . . . 9
|
| 93 | 59, 60, 92 | syl2anc 693 |
. . . . . . . 8
|
| 94 | 93 | oveq2d 6666 |
. . . . . . 7
|
| 95 | 85, 94 | eqtrd 2656 |
. . . . . 6
|
| 96 | 8 | nnzd 11481 |
. . . . . . . . 9
|
| 97 | zmulcl 11426 |
. . . . . . . . 9
| |
| 98 | 24, 96, 97 | sylancr 695 |
. . . . . . . 8
|
| 99 | gcddvds 15225 |
. . . . . . . 8
| |
| 100 | 7, 98, 99 | syl2anc 693 |
. . . . . . 7
|
| 101 | 100 | simprd 479 |
. . . . . 6
|
| 102 | 95, 101 | eqbrtrd 4675 |
. . . . 5
|
| 103 | nnaddcl 11042 |
. . . . . . . . . . . . . 14
| |
| 104 | 103 | nnne0d 11065 |
. . . . . . . . . . . . 13
|
| 105 | 104 | ancoms 469 |
. . . . . . . . . . . 12
|
| 106 | 105 | 3adant1 1079 |
. . . . . . . . . . 11
|
| 107 | 106 | 3ad2ant1 1082 |
. . . . . . . . . 10
|
| 108 | 107 | neneqd 2799 |
. . . . . . . . 9
|
| 109 | 108 | intnand 962 |
. . . . . . . 8
|
| 110 | gcdn0cl 15224 |
. . . . . . . 8
| |
| 111 | 7, 11, 109, 110 | syl21anc 1325 |
. . . . . . 7
|
| 112 | 111 | nnzd 11481 |
. . . . . 6
|
| 113 | dvdsgcd 15261 |
. . . . . 6
| |
| 114 | 112, 77, 98, 113 | syl3anc 1326 |
. . . . 5
|
| 115 | 81, 102, 114 | mp2and 715 |
. . . 4
|
| 116 | 2nn0 11309 |
. . . . . . 7
| |
| 117 | mulgcd 15265 |
. . . . . . 7
| |
| 118 | 116, 117 | mp3an1 1411 |
. . . . . 6
|
| 119 | 75, 96, 118 | syl2anc 693 |
. . . . 5
|
| 120 | pythagtriplem3 15523 |
. . . . . . 7
| |
| 121 | 120 | oveq2d 6666 |
. . . . . 6
|
| 122 | 2t1e2 11176 |
. . . . . 6
| |
| 123 | 121, 122 | syl6eq 2672 |
. . . . 5
|
| 124 | 119, 123 | eqtrd 2656 |
. . . 4
|
| 125 | 115, 124 | breqtrd 4679 |
. . 3
|
| 126 | dvdsprime 15400 |
. . . 4
| |
| 127 | 48, 111, 126 | sylancr 695 |
. . 3
|
| 128 | 125, 127 | mpbid 222 |
. 2
|
| 129 | orel1 397 |
. 2
| |
| 130 | 54, 128, 129 | sylc 65 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-fz 12327 df-fl 12593 df-mod 12669 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-dvds 14984 df-gcd 15217 df-prm 15386 |
| This theorem is referenced by: pythagtriplem6 15526 pythagtriplem7 15527 |
| Copyright terms: Public domain | W3C validator |