| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3elpr2eq | Structured version Visualization version Unicode version | ||
| Description: If there are three elements in a proper unordered pair, and two of them are different from the third one, the two must be equal. (Contributed by AV, 19-Dec-2021.) |
| Ref | Expression |
|---|---|
| 3elpr2eq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpri 4197 |
. . 3
| |
| 2 | elpri 4197 |
. . 3
| |
| 3 | elpri 4197 |
. . 3
| |
| 4 | eqtr3 2643 |
. . . . . . . . . . 11
| |
| 5 | eqneqall 2805 |
. . . . . . . . . . 11
| |
| 6 | 4, 5 | syl 17 |
. . . . . . . . . 10
|
| 7 | 6 | adantld 483 |
. . . . . . . . 9
|
| 8 | 7 | ex 450 |
. . . . . . . 8
|
| 9 | 8 | a1d 25 |
. . . . . . 7
|
| 10 | eqtr3 2643 |
. . . . . . . . . . . . 13
| |
| 11 | eqneqall 2805 |
. . . . . . . . . . . . 13
| |
| 12 | 10, 11 | syl 17 |
. . . . . . . . . . . 12
|
| 13 | 12 | impd 447 |
. . . . . . . . . . 11
|
| 14 | 13 | ex 450 |
. . . . . . . . . 10
|
| 15 | 14 | a1d 25 |
. . . . . . . . 9
|
| 16 | eqtr3 2643 |
. . . . . . . . . . 11
| |
| 17 | 16 | 2a1d 26 |
. . . . . . . . . 10
|
| 18 | 17 | ex 450 |
. . . . . . . . 9
|
| 19 | 15, 18 | jaoi 394 |
. . . . . . . 8
|
| 20 | 19 | com12 32 |
. . . . . . 7
|
| 21 | 9, 20 | jaoi 394 |
. . . . . 6
|
| 22 | 21 | com13 88 |
. . . . 5
|
| 23 | eqtr3 2643 |
. . . . . . . . . . 11
| |
| 24 | 23 | 2a1d 26 |
. . . . . . . . . 10
|
| 25 | 24 | ex 450 |
. . . . . . . . 9
|
| 26 | eqtr3 2643 |
. . . . . . . . . . . . 13
| |
| 27 | 26, 11 | syl 17 |
. . . . . . . . . . . 12
|
| 28 | 27 | impd 447 |
. . . . . . . . . . 11
|
| 29 | 28 | ex 450 |
. . . . . . . . . 10
|
| 30 | 29 | a1d 25 |
. . . . . . . . 9
|
| 31 | 25, 30 | jaoi 394 |
. . . . . . . 8
|
| 32 | 31 | com12 32 |
. . . . . . 7
|
| 33 | eqtr3 2643 |
. . . . . . . . . . 11
| |
| 34 | 33, 5 | syl 17 |
. . . . . . . . . 10
|
| 35 | 34 | adantld 483 |
. . . . . . . . 9
|
| 36 | 35 | ex 450 |
. . . . . . . 8
|
| 37 | 36 | a1d 25 |
. . . . . . 7
|
| 38 | 32, 37 | jaoi 394 |
. . . . . 6
|
| 39 | 38 | com13 88 |
. . . . 5
|
| 40 | 22, 39 | jaoi 394 |
. . . 4
|
| 41 | 40 | 3imp 1256 |
. . 3
|
| 42 | 1, 2, 3, 41 | syl3an 1368 |
. 2
|
| 43 | 42 | imp 445 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-v 3202 df-un 3579 df-sn 4178 df-pr 4180 |
| This theorem is referenced by: numedglnl 26039 |
| Copyright terms: Public domain | W3C validator |