MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3elpr2eq Structured version   Visualization version   Unicode version

Theorem 3elpr2eq 4435
Description: If there are three elements in a proper unordered pair, and two of them are different from the third one, the two must be equal. (Contributed by AV, 19-Dec-2021.)
Assertion
Ref Expression
3elpr2eq  |-  ( ( ( X  e.  { A ,  B }  /\  Y  e.  { A ,  B }  /\  Z  e.  { A ,  B } )  /\  ( Y  =/=  X  /\  Z  =/=  X ) )  ->  Y  =  Z )

Proof of Theorem 3elpr2eq
StepHypRef Expression
1 elpri 4197 . . 3  |-  ( X  e.  { A ,  B }  ->  ( X  =  A  \/  X  =  B ) )
2 elpri 4197 . . 3  |-  ( Y  e.  { A ,  B }  ->  ( Y  =  A  \/  Y  =  B ) )
3 elpri 4197 . . 3  |-  ( Z  e.  { A ,  B }  ->  ( Z  =  A  \/  Z  =  B ) )
4 eqtr3 2643 . . . . . . . . . . 11  |-  ( ( Z  =  A  /\  X  =  A )  ->  Z  =  X )
5 eqneqall 2805 . . . . . . . . . . 11  |-  ( Z  =  X  ->  ( Z  =/=  X  ->  Y  =  Z ) )
64, 5syl 17 . . . . . . . . . 10  |-  ( ( Z  =  A  /\  X  =  A )  ->  ( Z  =/=  X  ->  Y  =  Z ) )
76adantld 483 . . . . . . . . 9  |-  ( ( Z  =  A  /\  X  =  A )  ->  ( ( Y  =/= 
X  /\  Z  =/=  X )  ->  Y  =  Z ) )
87ex 450 . . . . . . . 8  |-  ( Z  =  A  ->  ( X  =  A  ->  ( ( Y  =/=  X  /\  Z  =/=  X
)  ->  Y  =  Z ) ) )
98a1d 25 . . . . . . 7  |-  ( Z  =  A  ->  (
( Y  =  A  \/  Y  =  B )  ->  ( X  =  A  ->  ( ( Y  =/=  X  /\  Z  =/=  X )  ->  Y  =  Z )
) ) )
10 eqtr3 2643 . . . . . . . . . . . . 13  |-  ( ( Y  =  A  /\  X  =  A )  ->  Y  =  X )
11 eqneqall 2805 . . . . . . . . . . . . 13  |-  ( Y  =  X  ->  ( Y  =/=  X  ->  ( Z  =/=  X  ->  Y  =  Z ) ) )
1210, 11syl 17 . . . . . . . . . . . 12  |-  ( ( Y  =  A  /\  X  =  A )  ->  ( Y  =/=  X  ->  ( Z  =/=  X  ->  Y  =  Z ) ) )
1312impd 447 . . . . . . . . . . 11  |-  ( ( Y  =  A  /\  X  =  A )  ->  ( ( Y  =/= 
X  /\  Z  =/=  X )  ->  Y  =  Z ) )
1413ex 450 . . . . . . . . . 10  |-  ( Y  =  A  ->  ( X  =  A  ->  ( ( Y  =/=  X  /\  Z  =/=  X
)  ->  Y  =  Z ) ) )
1514a1d 25 . . . . . . . . 9  |-  ( Y  =  A  ->  ( Z  =  B  ->  ( X  =  A  -> 
( ( Y  =/= 
X  /\  Z  =/=  X )  ->  Y  =  Z ) ) ) )
16 eqtr3 2643 . . . . . . . . . . 11  |-  ( ( Y  =  B  /\  Z  =  B )  ->  Y  =  Z )
17162a1d 26 . . . . . . . . . 10  |-  ( ( Y  =  B  /\  Z  =  B )  ->  ( X  =  A  ->  ( ( Y  =/=  X  /\  Z  =/=  X )  ->  Y  =  Z ) ) )
1817ex 450 . . . . . . . . 9  |-  ( Y  =  B  ->  ( Z  =  B  ->  ( X  =  A  -> 
( ( Y  =/= 
X  /\  Z  =/=  X )  ->  Y  =  Z ) ) ) )
1915, 18jaoi 394 . . . . . . . 8  |-  ( ( Y  =  A  \/  Y  =  B )  ->  ( Z  =  B  ->  ( X  =  A  ->  ( ( Y  =/=  X  /\  Z  =/=  X )  ->  Y  =  Z ) ) ) )
2019com12 32 . . . . . . 7  |-  ( Z  =  B  ->  (
( Y  =  A  \/  Y  =  B )  ->  ( X  =  A  ->  ( ( Y  =/=  X  /\  Z  =/=  X )  ->  Y  =  Z )
) ) )
219, 20jaoi 394 . . . . . 6  |-  ( ( Z  =  A  \/  Z  =  B )  ->  ( ( Y  =  A  \/  Y  =  B )  ->  ( X  =  A  ->  ( ( Y  =/=  X  /\  Z  =/=  X
)  ->  Y  =  Z ) ) ) )
2221com13 88 . . . . 5  |-  ( X  =  A  ->  (
( Y  =  A  \/  Y  =  B )  ->  ( ( Z  =  A  \/  Z  =  B )  ->  ( ( Y  =/= 
X  /\  Z  =/=  X )  ->  Y  =  Z ) ) ) )
23 eqtr3 2643 . . . . . . . . . . 11  |-  ( ( Y  =  A  /\  Z  =  A )  ->  Y  =  Z )
24232a1d 26 . . . . . . . . . 10  |-  ( ( Y  =  A  /\  Z  =  A )  ->  ( X  =  B  ->  ( ( Y  =/=  X  /\  Z  =/=  X )  ->  Y  =  Z ) ) )
2524ex 450 . . . . . . . . 9  |-  ( Y  =  A  ->  ( Z  =  A  ->  ( X  =  B  -> 
( ( Y  =/= 
X  /\  Z  =/=  X )  ->  Y  =  Z ) ) ) )
26 eqtr3 2643 . . . . . . . . . . . . 13  |-  ( ( Y  =  B  /\  X  =  B )  ->  Y  =  X )
2726, 11syl 17 . . . . . . . . . . . 12  |-  ( ( Y  =  B  /\  X  =  B )  ->  ( Y  =/=  X  ->  ( Z  =/=  X  ->  Y  =  Z ) ) )
2827impd 447 . . . . . . . . . . 11  |-  ( ( Y  =  B  /\  X  =  B )  ->  ( ( Y  =/= 
X  /\  Z  =/=  X )  ->  Y  =  Z ) )
2928ex 450 . . . . . . . . . 10  |-  ( Y  =  B  ->  ( X  =  B  ->  ( ( Y  =/=  X  /\  Z  =/=  X
)  ->  Y  =  Z ) ) )
3029a1d 25 . . . . . . . . 9  |-  ( Y  =  B  ->  ( Z  =  A  ->  ( X  =  B  -> 
( ( Y  =/= 
X  /\  Z  =/=  X )  ->  Y  =  Z ) ) ) )
3125, 30jaoi 394 . . . . . . . 8  |-  ( ( Y  =  A  \/  Y  =  B )  ->  ( Z  =  A  ->  ( X  =  B  ->  ( ( Y  =/=  X  /\  Z  =/=  X )  ->  Y  =  Z ) ) ) )
3231com12 32 . . . . . . 7  |-  ( Z  =  A  ->  (
( Y  =  A  \/  Y  =  B )  ->  ( X  =  B  ->  ( ( Y  =/=  X  /\  Z  =/=  X )  ->  Y  =  Z )
) ) )
33 eqtr3 2643 . . . . . . . . . . 11  |-  ( ( Z  =  B  /\  X  =  B )  ->  Z  =  X )
3433, 5syl 17 . . . . . . . . . 10  |-  ( ( Z  =  B  /\  X  =  B )  ->  ( Z  =/=  X  ->  Y  =  Z ) )
3534adantld 483 . . . . . . . . 9  |-  ( ( Z  =  B  /\  X  =  B )  ->  ( ( Y  =/= 
X  /\  Z  =/=  X )  ->  Y  =  Z ) )
3635ex 450 . . . . . . . 8  |-  ( Z  =  B  ->  ( X  =  B  ->  ( ( Y  =/=  X  /\  Z  =/=  X
)  ->  Y  =  Z ) ) )
3736a1d 25 . . . . . . 7  |-  ( Z  =  B  ->  (
( Y  =  A  \/  Y  =  B )  ->  ( X  =  B  ->  ( ( Y  =/=  X  /\  Z  =/=  X )  ->  Y  =  Z )
) ) )
3832, 37jaoi 394 . . . . . 6  |-  ( ( Z  =  A  \/  Z  =  B )  ->  ( ( Y  =  A  \/  Y  =  B )  ->  ( X  =  B  ->  ( ( Y  =/=  X  /\  Z  =/=  X
)  ->  Y  =  Z ) ) ) )
3938com13 88 . . . . 5  |-  ( X  =  B  ->  (
( Y  =  A  \/  Y  =  B )  ->  ( ( Z  =  A  \/  Z  =  B )  ->  ( ( Y  =/= 
X  /\  Z  =/=  X )  ->  Y  =  Z ) ) ) )
4022, 39jaoi 394 . . . 4  |-  ( ( X  =  A  \/  X  =  B )  ->  ( ( Y  =  A  \/  Y  =  B )  ->  (
( Z  =  A  \/  Z  =  B )  ->  ( ( Y  =/=  X  /\  Z  =/=  X )  ->  Y  =  Z ) ) ) )
41403imp 1256 . . 3  |-  ( ( ( X  =  A  \/  X  =  B )  /\  ( Y  =  A  \/  Y  =  B )  /\  ( Z  =  A  \/  Z  =  B )
)  ->  ( ( Y  =/=  X  /\  Z  =/=  X )  ->  Y  =  Z ) )
421, 2, 3, 41syl3an 1368 . 2  |-  ( ( X  e.  { A ,  B }  /\  Y  e.  { A ,  B }  /\  Z  e.  { A ,  B }
)  ->  ( ( Y  =/=  X  /\  Z  =/=  X )  ->  Y  =  Z ) )
4342imp 445 1  |-  ( ( ( X  e.  { A ,  B }  /\  Y  e.  { A ,  B }  /\  Z  e.  { A ,  B } )  /\  ( Y  =/=  X  /\  Z  =/=  X ) )  ->  Y  =  Z )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   {cpr 4179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-v 3202  df-un 3579  df-sn 4178  df-pr 4180
This theorem is referenced by:  numedglnl  26039
  Copyright terms: Public domain W3C validator