| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqneqall | Structured version Visualization version Unicode version | ||
| Description: A contradiction concerning equality implies anything. (Contributed by Alexander van der Vekens, 25-Jan-2018.) |
| Ref | Expression |
|---|---|
| eqneqall |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2795 |
. 2
| |
| 2 | pm2.24 121 |
. 2
| |
| 3 | 1, 2 | syl5bi 232 |
1
|
| Copyright terms: Public domain | W3C validator |