| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3gencl | Structured version Visualization version Unicode version | ||
| Description: Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.) |
| Ref | Expression |
|---|---|
| 3gencl.1 |
|
| 3gencl.2 |
|
| 3gencl.3 |
|
| 3gencl.4 |
|
| 3gencl.5 |
|
| 3gencl.6 |
|
| 3gencl.7 |
|
| Ref | Expression |
|---|---|
| 3gencl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3gencl.3 |
. . . . 5
| |
| 2 | df-rex 2918 |
. . . . 5
| |
| 3 | 1, 2 | bitri 264 |
. . . 4
|
| 4 | 3gencl.6 |
. . . . 5
| |
| 5 | 4 | imbi2d 330 |
. . . 4
|
| 6 | 3gencl.1 |
. . . . . 6
| |
| 7 | 3gencl.2 |
. . . . . 6
| |
| 8 | 3gencl.4 |
. . . . . . 7
| |
| 9 | 8 | imbi2d 330 |
. . . . . 6
|
| 10 | 3gencl.5 |
. . . . . . 7
| |
| 11 | 10 | imbi2d 330 |
. . . . . 6
|
| 12 | 3gencl.7 |
. . . . . . 7
| |
| 13 | 12 | 3expia 1267 |
. . . . . 6
|
| 14 | 6, 7, 9, 11, 13 | 2gencl 3236 |
. . . . 5
|
| 15 | 14 | com12 32 |
. . . 4
|
| 16 | 3, 5, 15 | gencl 3235 |
. . 3
|
| 17 | 16 | com12 32 |
. 2
|
| 18 | 17 | 3impia 1261 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 df-ex 1705 df-rex 2918 |
| This theorem is referenced by: axpre-lttrn 9987 axpre-ltadd 9988 |
| Copyright terms: Public domain | W3C validator |