| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gencl | Structured version Visualization version Unicode version | ||
| Description: Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.) |
| Ref | Expression |
|---|---|
| gencl.1 |
|
| gencl.2 |
|
| gencl.3 |
|
| Ref | Expression |
|---|---|
| gencl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gencl.1 |
. 2
| |
| 2 | gencl.3 |
. . . . 5
| |
| 3 | gencl.2 |
. . . . 5
| |
| 4 | 2, 3 | syl5ib 234 |
. . . 4
|
| 5 | 4 | impcom 446 |
. . 3
|
| 6 | 5 | exlimiv 1858 |
. 2
|
| 7 | 1, 6 | sylbi 207 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 |
| This theorem is referenced by: 2gencl 3236 3gencl 3237 indpi 9729 axrrecex 9984 |
| Copyright terms: Public domain | W3C validator |