MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  a1i13 Structured version   Visualization version   Unicode version

Theorem a1i13 27
Description: Add two antecedents to a wff. (Contributed by Jeff Hankins, 4-Aug-2009.)
Hypothesis
Ref Expression
a1i13.1  |-  ( ps 
->  th )
Assertion
Ref Expression
a1i13  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )

Proof of Theorem a1i13
StepHypRef Expression
1 a1i13.1 . . 3  |-  ( ps 
->  th )
21a1d 25 . 2  |-  ( ps 
->  ( ch  ->  th )
)
32a1i 11 1  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  ad4ant24  1298  ad5ant245  1307  seqshft2  12827  seqsplit  12834  filconn  21687  usgr2pth  26660  elwspths2on  26853  frgr3vlem1  27137  3vfriswmgrlem  27141
  Copyright terms: Public domain W3C validator