MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqshft2 Structured version   Visualization version   Unicode version

Theorem seqshft2 12827
Description: Shifting the index set of a sequence. (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqshft2.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seqshft2.2  |-  ( ph  ->  K  e.  ZZ )
seqshft2.3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  =  ( G `  ( k  +  K ) ) )
Assertion
Ref Expression
seqshft2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  (  seq ( M  +  K ) ( 
.+  ,  G ) `
 ( N  +  K ) ) )
Distinct variable groups:    k, F    k, G    k, K    k, M    ph, k    k, N
Allowed substitution hint:    .+ ( k)

Proof of Theorem seqshft2
Dummy variables  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqshft2.1 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 12349 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 17 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 eleq1 2689 . . . . . 6  |-  ( x  =  M  ->  (
x  e.  ( M ... N )  <->  M  e.  ( M ... N ) ) )
5 fveq2 6191 . . . . . . 7  |-  ( x  =  M  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  M
) )
6 oveq1 6657 . . . . . . . 8  |-  ( x  =  M  ->  (
x  +  K )  =  ( M  +  K ) )
76fveq2d 6195 . . . . . . 7  |-  ( x  =  M  ->  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  ( M  +  K )
) )
85, 7eqeq12d 2637 . . . . . 6  |-  ( x  =  M  ->  (
(  seq M (  .+  ,  F ) `  x
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) )  <->  (  seq M
(  .+  ,  F
) `  M )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( M  +  K ) ) ) )
94, 8imbi12d 334 . . . . 5  |-  ( x  =  M  ->  (
( x  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  x )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( x  +  K ) ) )  <-> 
( M  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  M )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( M  +  K ) ) ) ) )
109imbi2d 330 . . . 4  |-  ( x  =  M  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) ) ) )  <->  ( ph  ->  ( M  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  M )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( M  +  K ) ) ) ) ) )
11 eleq1 2689 . . . . . 6  |-  ( x  =  n  ->  (
x  e.  ( M ... N )  <->  n  e.  ( M ... N ) ) )
12 fveq2 6191 . . . . . . 7  |-  ( x  =  n  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  n
) )
13 oveq1 6657 . . . . . . . 8  |-  ( x  =  n  ->  (
x  +  K )  =  ( n  +  K ) )
1413fveq2d 6195 . . . . . . 7  |-  ( x  =  n  ->  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) ) )
1512, 14eqeq12d 2637 . . . . . 6  |-  ( x  =  n  ->  (
(  seq M (  .+  ,  F ) `  x
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) )  <->  (  seq M
(  .+  ,  F
) `  n )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( n  +  K ) ) ) )
1611, 15imbi12d 334 . . . . 5  |-  ( x  =  n  ->  (
( x  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  x )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( x  +  K ) ) )  <-> 
( n  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  n )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( n  +  K ) ) ) ) )
1716imbi2d 330 . . . 4  |-  ( x  =  n  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) ) ) )  <->  ( ph  ->  ( n  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  n )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( n  +  K ) ) ) ) ) )
18 eleq1 2689 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
x  e.  ( M ... N )  <->  ( n  +  1 )  e.  ( M ... N
) ) )
19 fveq2 6191 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) )
20 oveq1 6657 . . . . . . . 8  |-  ( x  =  ( n  + 
1 )  ->  (
x  +  K )  =  ( ( n  +  1 )  +  K ) )
2120fveq2d 6195 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  1 )  +  K ) ) )
2219, 21eqeq12d 2637 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
(  seq M (  .+  ,  F ) `  x
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) )  <->  (  seq M
(  .+  ,  F
) `  ( n  +  1 ) )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( (
n  +  1 )  +  K ) ) ) )
2318, 22imbi12d 334 . . . . 5  |-  ( x  =  ( n  + 
1 )  ->  (
( x  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  x )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( x  +  K ) ) )  <-> 
( ( n  + 
1 )  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  ( n  +  1 ) )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( (
n  +  1 )  +  K ) ) ) ) )
2423imbi2d 330 . . . 4  |-  ( x  =  ( n  + 
1 )  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) ) ) )  <->  ( ph  ->  ( ( n  + 
1 )  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  ( n  +  1 ) )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( (
n  +  1 )  +  K ) ) ) ) ) )
25 eleq1 2689 . . . . . 6  |-  ( x  =  N  ->  (
x  e.  ( M ... N )  <->  N  e.  ( M ... N ) ) )
26 fveq2 6191 . . . . . . 7  |-  ( x  =  N  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  N
) )
27 oveq1 6657 . . . . . . . 8  |-  ( x  =  N  ->  (
x  +  K )  =  ( N  +  K ) )
2827fveq2d 6195 . . . . . . 7  |-  ( x  =  N  ->  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  ( N  +  K )
) )
2926, 28eqeq12d 2637 . . . . . 6  |-  ( x  =  N  ->  (
(  seq M (  .+  ,  F ) `  x
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) )  <->  (  seq M
(  .+  ,  F
) `  N )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( N  +  K ) ) ) )
3025, 29imbi12d 334 . . . . 5  |-  ( x  =  N  ->  (
( x  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  x )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( x  +  K ) ) )  <-> 
( N  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  N )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( N  +  K ) ) ) ) )
3130imbi2d 330 . . . 4  |-  ( x  =  N  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) ) ) )  <->  ( ph  ->  ( N  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  N )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( N  +  K ) ) ) ) ) )
32 fveq2 6191 . . . . . . . 8  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
33 oveq1 6657 . . . . . . . . 9  |-  ( k  =  M  ->  (
k  +  K )  =  ( M  +  K ) )
3433fveq2d 6195 . . . . . . . 8  |-  ( k  =  M  ->  ( G `  ( k  +  K ) )  =  ( G `  ( M  +  K )
) )
3532, 34eqeq12d 2637 . . . . . . 7  |-  ( k  =  M  ->  (
( F `  k
)  =  ( G `
 ( k  +  K ) )  <->  ( F `  M )  =  ( G `  ( M  +  K ) ) ) )
36 seqshft2.3 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  =  ( G `  ( k  +  K ) ) )
3736ralrimiva 2966 . . . . . . 7  |-  ( ph  ->  A. k  e.  ( M ... N ) ( F `  k
)  =  ( G `
 ( k  +  K ) ) )
38 eluzfz1 12348 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
391, 38syl 17 . . . . . . 7  |-  ( ph  ->  M  e.  ( M ... N ) )
4035, 37, 39rspcdva 3316 . . . . . 6  |-  ( ph  ->  ( F `  M
)  =  ( G `
 ( M  +  K ) ) )
41 eluzel2 11692 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
421, 41syl 17 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
43 seq1 12814 . . . . . . 7  |-  ( M  e.  ZZ  ->  (  seq M (  .+  ,  F ) `  M
)  =  ( F `
 M ) )
4442, 43syl 17 . . . . . 6  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  =  ( F `  M
) )
45 seqshft2.2 . . . . . . . 8  |-  ( ph  ->  K  e.  ZZ )
4642, 45zaddcld 11486 . . . . . . 7  |-  ( ph  ->  ( M  +  K
)  e.  ZZ )
47 seq1 12814 . . . . . . 7  |-  ( ( M  +  K )  e.  ZZ  ->  (  seq ( M  +  K
) (  .+  ,  G ) `  ( M  +  K )
)  =  ( G `
 ( M  +  K ) ) )
4846, 47syl 17 . . . . . 6  |-  ( ph  ->  (  seq ( M  +  K ) ( 
.+  ,  G ) `
 ( M  +  K ) )  =  ( G `  ( M  +  K )
) )
4940, 44, 483eqtr4d 2666 . . . . 5  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  =  (  seq ( M  +  K ) ( 
.+  ,  G ) `
 ( M  +  K ) ) )
5049a1i13 27 . . . 4  |-  ( M  e.  ZZ  ->  ( ph  ->  ( M  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  M
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  ( M  +  K )
) ) ) )
51 peano2fzr 12354 . . . . . . . . . 10  |-  ( ( n  e.  ( ZZ>= `  M )  /\  (
n  +  1 )  e.  ( M ... N ) )  ->  n  e.  ( M ... N ) )
5251adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  ( M ... N ) )
5352expr 643 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  +  1 )  e.  ( M ... N )  ->  n  e.  ( M ... N
) ) )
5453imim1d 82 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  ( M ... N )  -> 
(  seq M (  .+  ,  F ) `  n
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) ) )  ->  (
( n  +  1 )  e.  ( M ... N )  -> 
(  seq M (  .+  ,  F ) `  n
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) ) ) ) )
55 oveq1 6657 . . . . . . . . . 10  |-  ( (  seq M (  .+  ,  F ) `  n
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) )  ->  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) )  =  ( (  seq ( M  +  K )
(  .+  ,  G
) `  ( n  +  K ) )  .+  ( F `  ( n  +  1 ) ) ) )
56 simprl 794 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  ( ZZ>= `  M )
)
57 seqp1 12816 . . . . . . . . . . . 12  |-  ( n  e.  ( ZZ>= `  M
)  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
5856, 57syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
5945adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  K  e.  ZZ )
60 eluzadd 11716 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  (
n  +  K )  e.  ( ZZ>= `  ( M  +  K )
) )
6156, 59, 60syl2anc 693 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( n  +  K )  e.  (
ZZ>= `  ( M  +  K ) ) )
62 seqp1 12816 . . . . . . . . . . . . 13  |-  ( ( n  +  K )  e.  ( ZZ>= `  ( M  +  K )
)  ->  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  K
)  +  1 ) )  =  ( (  seq ( M  +  K ) (  .+  ,  G ) `  (
n  +  K ) )  .+  ( G `
 ( ( n  +  K )  +  1 ) ) ) )
6361, 62syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  K
)  +  1 ) )  =  ( (  seq ( M  +  K ) (  .+  ,  G ) `  (
n  +  K ) )  .+  ( G `
 ( ( n  +  K )  +  1 ) ) ) )
64 eluzelz 11697 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( ZZ>= `  M
)  ->  n  e.  ZZ )
6556, 64syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  ZZ )
66 zcn 11382 . . . . . . . . . . . . . . 15  |-  ( n  e.  ZZ  ->  n  e.  CC )
67 zcn 11382 . . . . . . . . . . . . . . 15  |-  ( K  e.  ZZ  ->  K  e.  CC )
68 ax-1cn 9994 . . . . . . . . . . . . . . . 16  |-  1  e.  CC
69 add32 10254 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  CC  /\  1  e.  CC  /\  K  e.  CC )  ->  (
( n  +  1 )  +  K )  =  ( ( n  +  K )  +  1 ) )
7068, 69mp3an2 1412 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  CC  /\  K  e.  CC )  ->  ( ( n  + 
1 )  +  K
)  =  ( ( n  +  K )  +  1 ) )
7166, 67, 70syl2an 494 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( n  + 
1 )  +  K
)  =  ( ( n  +  K )  +  1 ) )
7265, 59, 71syl2anc 693 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (
n  +  1 )  +  K )  =  ( ( n  +  K )  +  1 ) )
7372fveq2d 6195 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  1 )  +  K ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  K
)  +  1 ) ) )
74 fveq2 6191 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
75 oveq1 6657 . . . . . . . . . . . . . . . . 17  |-  ( k  =  ( n  + 
1 )  ->  (
k  +  K )  =  ( ( n  +  1 )  +  K ) )
7675fveq2d 6195 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( n  + 
1 )  ->  ( G `  ( k  +  K ) )  =  ( G `  (
( n  +  1 )  +  K ) ) )
7774, 76eqeq12d 2637 . . . . . . . . . . . . . . 15  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  =  ( G `
 ( k  +  K ) )  <->  ( F `  ( n  +  1 ) )  =  ( G `  ( ( n  +  1 )  +  K ) ) ) )
7837adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  A. k  e.  ( M ... N
) ( F `  k )  =  ( G `  ( k  +  K ) ) )
79 simprr 796 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( n  +  1 )  e.  ( M ... N
) )
8077, 78, 79rspcdva 3316 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( F `  ( n  +  1 ) )  =  ( G `  ( ( n  +  1 )  +  K ) ) )
8172fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( G `  ( ( n  + 
1 )  +  K
) )  =  ( G `  ( ( n  +  K )  +  1 ) ) )
8280, 81eqtrd 2656 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( F `  ( n  +  1 ) )  =  ( G `  ( ( n  +  K )  +  1 ) ) )
8382oveq2d 6666 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) )  .+  ( F `
 ( n  + 
1 ) ) )  =  ( (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) )  .+  ( G `
 ( ( n  +  K )  +  1 ) ) ) )
8463, 73, 833eqtr4d 2666 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  1 )  +  K ) )  =  ( (  seq ( M  +  K ) (  .+  ,  G ) `  (
n  +  K ) )  .+  ( F `
 ( n  + 
1 ) ) ) )
8558, 84eqeq12d 2637 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  1 )  +  K ) )  <->  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) )  =  ( (  seq ( M  +  K )
(  .+  ,  G
) `  ( n  +  K ) )  .+  ( F `  ( n  +  1 ) ) ) ) )
8655, 85syl5ibr 236 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (  seq M (  .+  ,  F ) `  n
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) )  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  1 )  +  K ) ) ) )
8786expr 643 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  +  1 )  e.  ( M ... N )  ->  (
(  seq M (  .+  ,  F ) `  n
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) )  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  1 )  +  K ) ) ) ) )
8887a2d 29 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
( n  +  1 )  e.  ( M ... N )  -> 
(  seq M (  .+  ,  F ) `  n
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) ) )  ->  (
( n  +  1 )  e.  ( M ... N )  -> 
(  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  1 )  +  K ) ) ) ) )
8954, 88syld 47 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  ( M ... N )  -> 
(  seq M (  .+  ,  F ) `  n
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) ) )  ->  (
( n  +  1 )  e.  ( M ... N )  -> 
(  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  1 )  +  K ) ) ) ) )
9089expcom 451 . . . . 5  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( ( n  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  n
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) ) )  ->  (
( n  +  1 )  e.  ( M ... N )  -> 
(  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  1 )  +  K ) ) ) ) ) )
9190a2d 29 . . . 4  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ( ph  ->  ( n  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  n
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) ) ) )  -> 
( ph  ->  ( ( n  +  1 )  e.  ( M ... N )  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  1 )  +  K ) ) ) ) ) )
9210, 17, 24, 31, 50, 91uzind4 11746 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( N  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  N )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( N  +  K ) ) ) ) )
931, 92mpcom 38 . 2  |-  ( ph  ->  ( N  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  N )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( N  +  K ) ) ) )
943, 93mpd 15 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  (  seq ( M  +  K ) ( 
.+  ,  G ) `
 ( N  +  K ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   ` cfv 5888  (class class class)co 6650   CCcc 9934   1c1 9937    + caddc 9939   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802
This theorem is referenced by:  seqf1olem2  12841  seqshft  13825  isercoll2  14399  fprodser  14679  gsumccat  17378  mulgnndir  17569  mulgnndirOLD  17570
  Copyright terms: Public domain W3C validator