Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afvres Structured version   Visualization version   Unicode version

Theorem afvres 41252
Description: The value of a restricted function, analogous to fvres 6207. (Contributed by Alexander van der Vekens, 22-Jul-2017.)
Assertion
Ref Expression
afvres  |-  ( A  e.  B  ->  (
( F  |`  B )''' A )  =  ( F''' A ) )

Proof of Theorem afvres
StepHypRef Expression
1 elin 3796 . . . . . . . . 9  |-  ( A  e.  ( B  i^i  dom 
F )  <->  ( A  e.  B  /\  A  e. 
dom  F ) )
21biimpri 218 . . . . . . . 8  |-  ( ( A  e.  B  /\  A  e.  dom  F )  ->  A  e.  ( B  i^i  dom  F
) )
3 dmres 5419 . . . . . . . 8  |-  dom  ( F  |`  B )  =  ( B  i^i  dom  F )
42, 3syl6eleqr 2712 . . . . . . 7  |-  ( ( A  e.  B  /\  A  e.  dom  F )  ->  A  e.  dom  ( F  |`  B ) )
54ex 450 . . . . . 6  |-  ( A  e.  B  ->  ( A  e.  dom  F  ->  A  e.  dom  ( F  |`  B ) ) )
6 snssi 4339 . . . . . . . . . 10  |-  ( A  e.  B  ->  { A }  C_  B )
76resabs1d 5428 . . . . . . . . 9  |-  ( A  e.  B  ->  (
( F  |`  B )  |`  { A } )  =  ( F  |`  { A } ) )
87eqcomd 2628 . . . . . . . 8  |-  ( A  e.  B  ->  ( F  |`  { A }
)  =  ( ( F  |`  B )  |` 
{ A } ) )
98funeqd 5910 . . . . . . 7  |-  ( A  e.  B  ->  ( Fun  ( F  |`  { A } )  <->  Fun  ( ( F  |`  B )  |` 
{ A } ) ) )
109biimpd 219 . . . . . 6  |-  ( A  e.  B  ->  ( Fun  ( F  |`  { A } )  ->  Fun  ( ( F  |`  B )  |`  { A } ) ) )
115, 10anim12d 586 . . . . 5  |-  ( A  e.  B  ->  (
( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  ->  ( A  e.  dom  ( F  |`  B )  /\  Fun  ( ( F  |`  B )  |`  { A } ) ) ) )
1211impcom 446 . . . 4  |-  ( ( ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  /\  A  e.  B )  ->  ( A  e.  dom  ( F  |`  B )  /\  Fun  ( ( F  |`  B )  |`  { A } ) ) )
13 df-dfat 41196 . . . . 5  |-  ( ( F  |`  B ) defAt  A  <-> 
( A  e.  dom  ( F  |`  B )  /\  Fun  ( ( F  |`  B )  |` 
{ A } ) ) )
14 afvfundmfveq 41218 . . . . 5  |-  ( ( F  |`  B ) defAt  A  ->  ( ( F  |`  B )''' A )  =  ( ( F  |`  B ) `
 A ) )
1513, 14sylbir 225 . . . 4  |-  ( ( A  e.  dom  ( F  |`  B )  /\  Fun  ( ( F  |`  B )  |`  { A } ) )  -> 
( ( F  |`  B )''' A )  =  ( ( F  |`  B ) `
 A ) )
1612, 15syl 17 . . 3  |-  ( ( ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  /\  A  e.  B )  ->  (
( F  |`  B )''' A )  =  ( ( F  |`  B ) `
 A ) )
17 fvres 6207 . . . 4  |-  ( A  e.  B  ->  (
( F  |`  B ) `
 A )  =  ( F `  A
) )
1817adantl 482 . . 3  |-  ( ( ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  /\  A  e.  B )  ->  (
( F  |`  B ) `
 A )  =  ( F `  A
) )
19 df-dfat 41196 . . . . . 6  |-  ( F defAt 
A  <->  ( A  e. 
dom  F  /\  Fun  ( F  |`  { A }
) ) )
20 afvfundmfveq 41218 . . . . . 6  |-  ( F defAt 
A  ->  ( F''' A )  =  ( F `
 A ) )
2119, 20sylbir 225 . . . . 5  |-  ( ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  ->  ( F''' A )  =  ( F `  A ) )
2221eqcomd 2628 . . . 4  |-  ( ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  ->  ( F `  A )  =  ( F''' A ) )
2322adantr 481 . . 3  |-  ( ( ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  /\  A  e.  B )  ->  ( F `  A )  =  ( F''' A ) )
2416, 18, 233eqtrd 2660 . 2  |-  ( ( ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  /\  A  e.  B )  ->  (
( F  |`  B )''' A )  =  ( F''' A ) )
25 pm3.4 584 . . . . . . . . . 10  |-  ( ( A  e.  B  /\  A  e.  dom  F )  ->  ( A  e.  B  ->  A  e.  dom  F ) )
261, 25sylbi 207 . . . . . . . . 9  |-  ( A  e.  ( B  i^i  dom 
F )  ->  ( A  e.  B  ->  A  e.  dom  F ) )
2726, 3eleq2s 2719 . . . . . . . 8  |-  ( A  e.  dom  ( F  |`  B )  ->  ( A  e.  B  ->  A  e.  dom  F ) )
2827com12 32 . . . . . . 7  |-  ( A  e.  B  ->  ( A  e.  dom  ( F  |`  B )  ->  A  e.  dom  F ) )
297funeqd 5910 . . . . . . . 8  |-  ( A  e.  B  ->  ( Fun  ( ( F  |`  B )  |`  { A } )  <->  Fun  ( F  |`  { A } ) ) )
3029biimpd 219 . . . . . . 7  |-  ( A  e.  B  ->  ( Fun  ( ( F  |`  B )  |`  { A } )  ->  Fun  ( F  |`  { A } ) ) )
3128, 30anim12d 586 . . . . . 6  |-  ( A  e.  B  ->  (
( A  e.  dom  ( F  |`  B )  /\  Fun  ( ( F  |`  B )  |` 
{ A } ) )  ->  ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) ) ) )
3231con3d 148 . . . . 5  |-  ( A  e.  B  ->  ( -.  ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  ->  -.  ( A  e.  dom  ( F  |`  B )  /\  Fun  ( ( F  |`  B )  |`  { A } ) ) ) )
3332impcom 446 . . . 4  |-  ( ( -.  ( A  e. 
dom  F  /\  Fun  ( F  |`  { A }
) )  /\  A  e.  B )  ->  -.  ( A  e.  dom  ( F  |`  B )  /\  Fun  ( ( F  |`  B )  |` 
{ A } ) ) )
34 afvnfundmuv 41219 . . . . 5  |-  ( -.  ( F  |`  B ) defAt 
A  ->  ( ( F  |`  B )''' A )  =  _V )
3513, 34sylnbir 321 . . . 4  |-  ( -.  ( A  e.  dom  ( F  |`  B )  /\  Fun  ( ( F  |`  B )  |` 
{ A } ) )  ->  ( ( F  |`  B )''' A )  =  _V )
3633, 35syl 17 . . 3  |-  ( ( -.  ( A  e. 
dom  F  /\  Fun  ( F  |`  { A }
) )  /\  A  e.  B )  ->  (
( F  |`  B )''' A )  =  _V )
37 afvnfundmuv 41219 . . . . . 6  |-  ( -.  F defAt  A  ->  ( F''' A )  =  _V )
3819, 37sylnbir 321 . . . . 5  |-  ( -.  ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  ->  ( F''' A )  =  _V )
3938eqcomd 2628 . . . 4  |-  ( -.  ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  ->  _V  =  ( F''' A ) )
4039adantr 481 . . 3  |-  ( ( -.  ( A  e. 
dom  F  /\  Fun  ( F  |`  { A }
) )  /\  A  e.  B )  ->  _V  =  ( F''' A ) )
4136, 40eqtrd 2656 . 2  |-  ( ( -.  ( A  e. 
dom  F  /\  Fun  ( F  |`  { A }
) )  /\  A  e.  B )  ->  (
( F  |`  B )''' A )  =  ( F''' A ) )
4224, 41pm2.61ian 831 1  |-  ( A  e.  B  ->  (
( F  |`  B )''' A )  =  ( F''' A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573   {csn 4177   dom cdm 5114    |` cres 5116   Fun wfun 5882   ` cfv 5888   defAt wdfat 41193  '''cafv 41194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-dfat 41196  df-afv 41197
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator