Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  faovcl Structured version   Visualization version   Unicode version

Theorem faovcl 41280
Description: Closure law for an operation, analogous to fovcl 6765. (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypothesis
Ref Expression
faovcl.1  |-  F :
( R  X.  S
) --> C
Assertion
Ref Expression
faovcl  |-  ( ( A  e.  R  /\  B  e.  S )  -> (( A F B))  e.  C )

Proof of Theorem faovcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 faovcl.1 . . 3  |-  F :
( R  X.  S
) --> C
2 ffnaov 41279 . . . 4  |-  ( F : ( R  X.  S ) --> C  <->  ( F  Fn  ( R  X.  S
)  /\  A. x  e.  R  A. y  e.  S (( x F
y))  e.  C ) )
32simprbi 480 . . 3  |-  ( F : ( R  X.  S ) --> C  ->  A. x  e.  R  A. y  e.  S (( x F y))  e.  C
)
41, 3ax-mp 5 . 2  |-  A. x  e.  R  A. y  e.  S (( x F
y))  e.  C
5 eqidd 2623 . . . . 5  |-  ( x  =  A  ->  F  =  F )
6 id 22 . . . . 5  |-  ( x  =  A  ->  x  =  A )
7 eqidd 2623 . . . . 5  |-  ( x  =  A  ->  y  =  y )
85, 6, 7aoveq123d 41258 . . . 4  |-  ( x  =  A  -> (( x F y))  = (( A F y))  )
98eleq1d 2686 . . 3  |-  ( x  =  A  ->  ( (( x F y))  e.  C  <-> (( A F y))  e.  C
) )
10 eqidd 2623 . . . . 5  |-  ( y  =  B  ->  F  =  F )
11 eqidd 2623 . . . . 5  |-  ( y  =  B  ->  A  =  A )
12 id 22 . . . . 5  |-  ( y  =  B  ->  y  =  B )
1310, 11, 12aoveq123d 41258 . . . 4  |-  ( y  =  B  -> (( A F y))  = (( A F B))  )
1413eleq1d 2686 . . 3  |-  ( y  =  B  ->  ( (( A F y))  e.  C  <-> (( A F B))  e.  C
) )
159, 14rspc2v 3322 . 2  |-  ( ( A  e.  R  /\  B  e.  S )  ->  ( A. x  e.  R  A. y  e.  S (( x F y))  e.  C  -> (( A F B))  e.  C ) )
164, 15mpi 20 1  |-  ( ( A  e.  R  /\  B  e.  S )  -> (( A F B))  e.  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    X. cxp 5112    Fn wfn 5883   -->wf 5884   ((caov 41195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-dfat 41196  df-afv 41197  df-aov 41198
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator