MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-ac2 Structured version   Visualization version   Unicode version

Axiom ax-ac2 9285
Description: In order to avoid uses of ax-reg 8497 for derivation of AC equivalents, we provide ax-ac2 9285, which is equivalent to the standard AC of textbooks. This appears to be the shortest known equivalent to the standard AC when expressed in terms of set theory primitives. It was found by Kurt Maes as theorem ackm 9287. We removed the leading quantifier to make it slightly shorter, since we have ax-gen 1722 available. The derivation of ax-ac2 9285 from ax-ac 9281 is shown by theorem axac2 9288, and the reverse derivation by axac 9289. Note that we use ax-reg 8497 to derive ax-ac 9281 from ax-ac2 9285, but not to derive ax-ac2 9285 from ax-ac 9281. (Contributed by NM, 19-Dec-2016.)
Assertion
Ref Expression
ax-ac2  |-  E. y A. z E. v A. u ( ( y  e.  x  /\  (
z  e.  y  -> 
( ( v  e.  x  /\  -.  y  =  v )  /\  z  e.  v )
) )  \/  ( -.  y  e.  x  /\  ( z  e.  x  ->  ( ( v  e.  z  /\  v  e.  y )  /\  (
( u  e.  z  /\  u  e.  y )  ->  u  =  v ) ) ) ) )
Distinct variable group:    x, y, z, v, u

Detailed syntax breakdown of Axiom ax-ac2
StepHypRef Expression
1 vy . . . . . . . 8  setvar  y
2 vx . . . . . . . 8  setvar  x
31, 2wel 1991 . . . . . . 7  wff  y  e.  x
4 vz . . . . . . . . 9  setvar  z
54, 1wel 1991 . . . . . . . 8  wff  z  e.  y
6 vv . . . . . . . . . . 11  setvar  v
76, 2wel 1991 . . . . . . . . . 10  wff  v  e.  x
81, 6weq 1874 . . . . . . . . . . 11  wff  y  =  v
98wn 3 . . . . . . . . . 10  wff  -.  y  =  v
107, 9wa 384 . . . . . . . . 9  wff  ( v  e.  x  /\  -.  y  =  v )
114, 6wel 1991 . . . . . . . . 9  wff  z  e.  v
1210, 11wa 384 . . . . . . . 8  wff  ( ( v  e.  x  /\  -.  y  =  v
)  /\  z  e.  v )
135, 12wi 4 . . . . . . 7  wff  ( z  e.  y  ->  (
( v  e.  x  /\  -.  y  =  v )  /\  z  e.  v ) )
143, 13wa 384 . . . . . 6  wff  ( y  e.  x  /\  (
z  e.  y  -> 
( ( v  e.  x  /\  -.  y  =  v )  /\  z  e.  v )
) )
153wn 3 . . . . . . 7  wff  -.  y  e.  x
164, 2wel 1991 . . . . . . . 8  wff  z  e.  x
176, 4wel 1991 . . . . . . . . . 10  wff  v  e.  z
186, 1wel 1991 . . . . . . . . . 10  wff  v  e.  y
1917, 18wa 384 . . . . . . . . 9  wff  ( v  e.  z  /\  v  e.  y )
20 vu . . . . . . . . . . . 12  setvar  u
2120, 4wel 1991 . . . . . . . . . . 11  wff  u  e.  z
2220, 1wel 1991 . . . . . . . . . . 11  wff  u  e.  y
2321, 22wa 384 . . . . . . . . . 10  wff  ( u  e.  z  /\  u  e.  y )
2420, 6weq 1874 . . . . . . . . . 10  wff  u  =  v
2523, 24wi 4 . . . . . . . . 9  wff  ( ( u  e.  z  /\  u  e.  y )  ->  u  =  v )
2619, 25wa 384 . . . . . . . 8  wff  ( ( v  e.  z  /\  v  e.  y )  /\  ( ( u  e.  z  /\  u  e.  y )  ->  u  =  v ) )
2716, 26wi 4 . . . . . . 7  wff  ( z  e.  x  ->  (
( v  e.  z  /\  v  e.  y )  /\  ( ( u  e.  z  /\  u  e.  y )  ->  u  =  v ) ) )
2815, 27wa 384 . . . . . 6  wff  ( -.  y  e.  x  /\  ( z  e.  x  ->  ( ( v  e.  z  /\  v  e.  y )  /\  (
( u  e.  z  /\  u  e.  y )  ->  u  =  v ) ) ) )
2914, 28wo 383 . . . . 5  wff  ( ( y  e.  x  /\  ( z  e.  y  ->  ( ( v  e.  x  /\  -.  y  =  v )  /\  z  e.  v
) ) )  \/  ( -.  y  e.  x  /\  ( z  e.  x  ->  (
( v  e.  z  /\  v  e.  y )  /\  ( ( u  e.  z  /\  u  e.  y )  ->  u  =  v ) ) ) ) )
3029, 20wal 1481 . . . 4  wff  A. u
( ( y  e.  x  /\  ( z  e.  y  ->  (
( v  e.  x  /\  -.  y  =  v )  /\  z  e.  v ) ) )  \/  ( -.  y  e.  x  /\  (
z  e.  x  -> 
( ( v  e.  z  /\  v  e.  y )  /\  (
( u  e.  z  /\  u  e.  y )  ->  u  =  v ) ) ) ) )
3130, 6wex 1704 . . 3  wff  E. v A. u ( ( y  e.  x  /\  (
z  e.  y  -> 
( ( v  e.  x  /\  -.  y  =  v )  /\  z  e.  v )
) )  \/  ( -.  y  e.  x  /\  ( z  e.  x  ->  ( ( v  e.  z  /\  v  e.  y )  /\  (
( u  e.  z  /\  u  e.  y )  ->  u  =  v ) ) ) ) )
3231, 4wal 1481 . 2  wff  A. z E. v A. u ( ( y  e.  x  /\  ( z  e.  y  ->  ( ( v  e.  x  /\  -.  y  =  v )  /\  z  e.  v
) ) )  \/  ( -.  y  e.  x  /\  ( z  e.  x  ->  (
( v  e.  z  /\  v  e.  y )  /\  ( ( u  e.  z  /\  u  e.  y )  ->  u  =  v ) ) ) ) )
3332, 1wex 1704 1  wff  E. y A. z E. v A. u ( ( y  e.  x  /\  (
z  e.  y  -> 
( ( v  e.  x  /\  -.  y  =  v )  /\  z  e.  v )
) )  \/  ( -.  y  e.  x  /\  ( z  e.  x  ->  ( ( v  e.  z  /\  v  e.  y )  /\  (
( u  e.  z  /\  u  e.  y )  ->  u  =  v ) ) ) ) )
Colors of variables: wff setvar class
This axiom is referenced by:  axac3  9286
  Copyright terms: Public domain W3C validator